THE BGU NIST 2020 CTS SPEAKER RECOGNITION CHALLENGE SYSTEM

Shani Klein, Bar Madar, Haim Permuter

Department of Electrical Engineering, Ben-Gurion University, Beer-Sheva, Israel

shanikle@post.bgu.ac.il,

ABSTRACT

This document briefly describes the systems submitted by
BGU team of Ben-Gurion University for the NIST SRE 2020
CTS challenge. All systems based on deep neural network
(DNN) speaker embeddings. In this paradigm, a DNN maps
variable-length speech segments to speaker embeddings,
called x-vectors . We used several x-vector-based systems
that differed primarily in the DNN architecture, temporal
pooling mechanism, and training objective function. After
speaker embedding is extracted, we apply domain adaptation
and classify the embedding using probabilistic linear discrim-
inant analysis model (PLDA).

On the evaluation set, our best single-system submission
used a Resnet architecture (using LDE and Angular Soft-
max), and achieved EER of 3.55% , min DCF of 0.147 and
actual DCF of 0.153 . A fusion of all four x-vector systems
was our primary submission, and it obtained EER of 2.85%,
min DCF of 0.124 and actual DCF of 0.132 .

1. INTRODUCTION

The main task in the CTS Challenge is speaker detection, i.e.,
determining whether a specified target speaker is speaking
during a given segment of speech .

NIST SRE 2020 CTS challenge uses CTS recordings ex-
tracted from multiple data source . Unlike the 2019 CTS
Challenge, this challenge containing multilingual speech and
no development set was initially released.

In this paper, we analyze the BGU submission to NIST
SRE CTS 2020 and the effect of the unknown multilingual
evaluation data set on the performance of the systems.

All our systems consisted of a Deep neural network em-
bedding (x-vector)[1], We explored several types of x-vectors
differing in network topology and pooling methods inculd-
ing TDNN , Extended-TDNN(ETDNN), factorized TDNN,
and ResNet. We also tested mean plus standard deviation;
learnable dictionary encoder (LDE). The system give scor-
ing PLDA [2] back-end. We adapted the embeddings features
and the back-end models to the multilingual conditions us-
ing combinations of data sets consist different languages with

haimplbgu.ac.il

adaptation algorithms such PLDA adaptation, LDA, whiten-
ing and correlation alignment (CORAL).

The rest of the paper is organized as follows. Section 2 de-
scribes the data we used to train the models and description
of the augmentation algorithms we used. Section 3 describes
the acoustic features and VAD. Section 4 discusses the Deep
speaker embedding (x-vector) extractor variants. Section 5
describes the back-end and the multilingual adaptations tech-
niques. Section 6 summarizes the calibration, fusion and nor-
malization. Section 8 presents and analyzes the results. Fi-
nally, Section 9 shows the conclusions.

We adapted the embeddings features and the back-end
models to the multilingual conditions using combinations of
data sets consist different languages with adaptation algo-
rithms such PLDA adaptation, LDA, whitening and corre-
lation alignment (CORAL). These systems considered the
current state-of-the-art in text-independent speaker recogni-
tion technology.

2. DATA SETS

Table 1 lists the different datasets that we used for training
and optimizing the system. Four different corpus are used:
SRE+SWBD+LRE+MX6 corpus that Combines Switch-
board, LRE, SRE’ 04, 05, 06, 08 and Mixer6, used for the
PLDA training and Backend components. Voxceleb corpus
that Combines Voxceleb 1 and 2 for the embedding extrac-
tor training and PLDA training. SRE18+19 that Combines
SREI18 eval, SRE18 Unlabeled and SRE19 eval, for backend
components. While the SRE, SWBD and Mixer6 data sets are
sampling at 8Khz, the Voxceleb data set was downsampled
from 16Khz to 8 Khz using SOX.

2.1. Data augmentation

Augmentation increases the amount and diversity of the ex-
isting training data. Our strategy employs additive noises and
reverberation. Reverberation involves convolving room im-
pulse responses (RIR) with audio. We use the simulated RIRs
described in [3], and the reverberation itself is performed with
the multi-condition training tools in the Kaldi recipe [4]. For

additive noise, we use the MUSAN dataset, which consists of
over 900 noises, 42 hours of music from various genres and
60 hours of speech from twelve languages [5]. We use a 3-
fold augmentation that combines the original “clean” training
list with two augmented copies. To augment a recording, we
choose between one of the following randomly:

* Babble: Three to seven speakers are randomly picked
from MUSAN speech, summed together, then added to
the original signal (13-20dB SNR).

e Music: A single music file is randomly selected from
MUSAN, trimmed or repeated as necessary to match
duration, and added to the original signal (5-15dB
SNR).

¢ Noise: MUSAN noises are added at one second inter-
vals throughout the recording (0-15dB SNR).

* Reverb: The training recording is artificially reverber-
ated via convolution with simulated RIRs.

H Name H Corpora H

SRE_SWBD_LRE_MX6 || SRE’04, 05, 06, 08
Switchboard-2 Phase I
Switchboard-2 Phase II
Switchboard-2 Phase II1
Switchboard Cellular Part 1
Switchboard Cellular Part 2
LRE 2011 test set

Mixer 6

VOXCELEB Voxceleb 1
Voxceleb 2

SRE18_19 SRE18 eval + unlabeled
SRE19 eval

Table 1. Corpora used for training the systems.

3. ACOUSTIC FEATURES AND VAD

3.1. feature extraction

for the TDNN based system the features are 23 MFCCs with
a frame length of 25ms every 10ms using a 23 channel mel-
scale filterbank spanning the frequency range 20Hz-3700Hz.
for the system based on ResNet we used 40 log-Mel filter-
banks. All the feature vectors are mean-normalized over a
sliding window of up to 3 seconds.

3.2. VAD and selecting frames

An energy-based with configuration in kaldi recipe - sre16/v1
is employed to filter out non-speech frames from the utter-

ances. Features that are too short after removing silence were
removed (at least 5s(500 frames) per utterance).

4. DEEP SPEAKER EMBEDDINGS (X-VECTOR)

speaker embedding is a fixed vector that represent each
speaker regardless of the length of the speaker’s utterance.
To extract the embedding we used transfer learning method.
We trained a model to classified speakers from a close data
set (Voxceleb). The models are divided into an encoder
(DNN + pooling layer + Fully connected layers) and clas-
sifier (softmax or angular-softamx layers). After the model
is well training, we cut the classifier part, and the FC layer
become to be the output that extract the speaker embedding
(X-vector) of a new utterance. Each system is used different
DNN encoder and classifier as follow:

4.1. TDNN based Encoder networks
4.1.1. TDNN X-vector system

We used Time delay neural network connected to a statistics
pooling layer that aggregates the frame-level TDNN outputs
and calculates the mean vector as well as the second-order
statistics as the standard deviation vector over the features
to output a fixed 512-dimensional utterance-level x-vectors.
Specifically, we trained the TDNN architecture mention in

[1].

4.1.2. Extended TDNN X-vector System

Etdnn system is an extended version of tdnn. It has wider
context and interleaving dense layers between each two tdnn
layers. The ETDNN configuration is outlined in table 2.

4.1.3. F-TDNN with skip connections

The factorized TDNN (F-TDNN)[6], reduces the number of
parameters of the network by factorizing the weight matrix of
each TDNN layer into the product of two low-rank matrices.
The first matrix is constrained to be semi-orthogonal in or-
der to retain the main information. To further reduce the risk
of gradient vanishing of deeper networks, FTDNN introduces
skip connections between the low-rank interior layers, where
previous layers are concatenated to form the input of the cur-
rent layer. In general, skip connections is performed by using
a vector addition between the connected layers as performs
in the “Resnet” architecture [7]. In our case the skip connec-
tions are performed via concatenation of the vectors so as to
ensure maximum information flow between layers in the net-
work, inspired by the "Densnet” architecture[8]. The FTDNN
configuration is outlined in table 3 In summary, our F-TDNN
consisted of a TDNN layer of kernel size 5 and 512 chan-
nels; 8 F-TDNN layers with 1024 channels and bottelneck

dimension of 256; and a fully connected layer with dimen-
sion 2048. The time offsets in the splicing for the F-TDNN
layers are (2,0,2,0,2,2,2,0). Layer 5 receives skip connections
from layer 3; Layer 7 receives skip connections from layers
2.4; Layer 9 receives skip connections from layers 4,6. The
pooling layer and the classifier are the same as the TDNN
system.

4.2. Resnet34-LDE encoder network

TDNN layers are replaced by a residual network with 2D
convolutions. We used a residual network with 34 layers
(ResNet34) and the pooling layer is replaced by a learnable
dictionary encoding (LDE)layer[9]. The original x-vector
framework assumes that the frame-level TDNN representa-
tions before the pooling layer are unimodal. Thus, to pool
those representations, we just compute their mean and stan-
dard deviation to obtain a single vector per utterance. Instead,
the LDE pooling assumes that frame-level representations are
GMM distributed in C clusters and it learns a dictionary with
the centers of those clusters. In more details, Given a set of
L frames feature sequence {x1,Xs...,xr,} and a learned dic-
tionary center g = {1, ..., o }. We define the smoothing
factor Sc for each dictionary center u. to be learnable:
exp (_SC||rtCH2)
Wte = C (1)
2 m=1€XP (=8m|[Tem||)

Now, each frame-feature x; can be assigned with a weight wy,
to each component pc and the corresponding residual vector
is denoted by r¢e = @t — e, Where t = 1,...L and ¢ =
1,...C. The residual encoding model applies an aggregation
operation for every dictionary component center pc:

L L
(=S| |ree|?
Ec:Zetc:Zt_l(L ||[7ee||))
t=1 Dot Wee

The LDE layer concatenates the aggregated residual vectors
with assigned weights. The resulted encoder outputs a fixed
dimensional representation E = {eq, ..., ec} (independent
of the sequence length L). Instead of using the cross-entropy
loss function for training,we used the angular softmax loss
[10]. The angular softmax loss has stronger requirements for
correct classification when m > 2 (an integer that controls
the angular margin), which generates an angular classifica-
tion margin between embeddings of different classes. Table
4, shows our basic Resnet based speaker embedding extractor
topology. The pooling method on this architecture is mean
and std so its double the size of the input vector (128 —
256). The Resnet based encoder was implemented in Pytorch
while the other systems were implemented in Kaldi.

S. BACKEND

In order to deal with the multilingual challenge, we used
adaptation algorithms(LDA, Whitening, CORAL) but instead

of adapt out-of-domain data to in-domain, we generate a data
set consists portions from augmented VOXCELEB, SRE,
SRE18+19,Mixer6, LRE, SWBD (1M utterances in total).
This data set is multilingual, and we used all the adaptation
algorithms to adapt the classifier(PLDA) training data to this
multilingual data. It makes our systems to be more robustness
to a multilingual data.

5.1. CORAL

Correlation Alligment (CORAL) is used to adapt the x-
vectors of the out-of-domain data to in-domain. Let Cop
and C be the covariance matrices of the OOD and InD data,
respectively. Denote X as the OOD x-vector, the CORAL is
performed by first whitening and then re-coloring, as follows:

1 _1
Xcoral = C12 CO X 3)

To robust our systems for a multilingual data, we build a data
set consist of portions from voxceleb, SRE, SRE18-19 and
swbd (1M utterances at all) and adapt the x-vectors to this
multilingual combined data-set in order to reduce the differ-
ence between the different domains.

5.2. LDA and whitening

Dimensional reduction (LDA) from 512 to 150 is performed
using linear discriminant analysis (LDA). Whitening and cen-
tering processes applying on all the x-vectors extracted from
the DNN

5.3. PLDA

As a clssifier, we used a Gaussian PLDA model as describe
in [11] with a full-rank Eigenvoice subspace is used, trained
with the data mention in 2.

5.4. PLDA adaptation

The PLDA was adapted using the SRE18+19 augmented data
as describe in [12] Although the multilingual test set and in-
stead of the backend adaptation data that describes in 5, we
found that PLDA adaptation with this data improve the sys-
tems performances the most.

6. CALIBRATION, FUSION AND NORMALIZATION

* Fusion and calibration: Fusion and calibration was per-
formed using linear logistic regression with the Bosaris
toolkit[13]. To select the best fusion, we implemented
a greedy fusion scheme. First, we calibrated all the
systems and select the one with the lowest actual cost.
Then, we evaluated all the two-system fusions that in-
clude that best system. Thus, we got the best two sys-
tems fusion. We fixed those two systems and then add
a third system, and so on.

e Normalization: we create our own cohorts based on
previews competitions , then we used AS-NORM to
normalize and calibrate.

7. RESULTS

We list the performance of all single systems on SRE20Eval
in Table 2. All results were computed by the official NIST
scoring tool. The primary measure metric is the act-Cost,
which is an average of detection cost functions (DCFs) at pri-
ori probabilities 0.05. The best single system is the Resnet
based,which achieves 3.40% EER, 0.153 min-DCF, and 0.336
act-DCF on SRE20 evaluation set. Our primary submission is
the fusion of 3 systems as describes on 6, including ETDNN,
FTDNN and Resnet. The primary system yields 2.67% EER,
0.134 min-DCF, and 0.209 act-DCF on the evaluation set of
SRE20.

8. CPU EXECUTION TIME

All tasks were performed on 64bit linux with 512G RAM
and two Intel Xeon Silver 4114 2.20GHz. All CPU times are
counted based on one core CPU. The time it took to process
a single trial is 28 seconds.

Layer Layer Type Layer context | Total context | Input x output
1 TDNN-ReLU [2,t+2] 5 120x512
2 Dense-ReLU {t} 5 512x512
3 TDNN-ReLU {t-2,t,t+2} 9 1536x512
4 Dense-ReLU {t} 9 512x512
5 TDNN-ReLU {t-3,t,t+3} 15 1536x512
6 Dense-ReLU {t} 15 512x512
7 | TDNN-ReLU | {t4,,t+4] 23 1536x512
8 Dense-ReLU {t} 23 512x512
9 Dense-ReLU {t-5,t,t+45} 33 536x512
10 Dense-ReLU {t} 33 512x512
11 Dense-ReLU {t} 33 512x512
12 Dense-ReLU {t} 33 512x1500
13 Stats-Pooling [0,T) T 1500Tx3000
14 Dense-ReLU {0} T 3000x512
15 Dense-ReLU {0} T 512x512
16 | Dense-softmax {0} T 512xN

Table 2. The x-vector speaker embedding extractor ETDNN architecture. The speaker embedding vector, extracted from Layer
14 (in bold) The size dimensions are adjusted for input utterance consists of T frames, and close trainig set consists of N

speakers

Layer Layer Type Context | Context | Skip conn. Size Inner
factor 1 | factor 2 | from layer size
1 TDNN-ReLU | [t-2,t+2] - - 120x512 -
2 F-TDNN-ReLU | {t-2,t} {t,t+2} - 1536x1024 256
3 F-TDNN-ReLU {t} {t} - 1024x1024 256
4 F-TDNN-ReLU | {t-3,t} {t,t+3} - 3072x1024 256
5 F-TDNN-ReLU {t} {t} 3 2048x1024 256
6 F-TDNN-ReLU | {t-3,t} {tt+3} - 3072x1024 256
7 F-TDNN-ReLU | {t-3,t} {t,t+3} 24 5120x1024 256
8 F-TDNN-ReLU | {t-3,t} {tt+3} - 3072x1024 256
9 F-TDNN-ReLU {t} {t} 4,6,8 4096x1024 256
10 Dense-ReLU {t} - - 1024x20438 -
11 Stats-Pooling full-seq - - 2048Tx4096 -
12 Dense-ReLU {0} - - 4096x512 -
13 Dense-ReLLU - - - 512x512 -
14 Dense-Softmax - - - 512xN.spks -

Table 3. The speaker embedding extractor FTDNN architecture. The speaker embedding vector, extracted from Layer 12 (in
bold)

Layer Layer Output Downsample | Channels | Blocks
Type Size
1 Convl FxT No 16 -
2 ResBlock FxT No 16 3
3 ResBlock F/2xT/2 Yes 32 4
4 ResBlock F/4xT/4 Yes 64 6
5 ResBlock F/8xT/8 Yes 128 3
6 Pooling 256 x 1 - 1 -
7 Dense-ReLu 1024 x 1 - - -
8 Dense-ReLu 1 x 1024 - - -
9 Dense-Softmax | 1 x N.spks - - -

Table 4. The speaker embedding extractor Resnet architecture. “F” is the size of the frame-level feature vector, ”T” is the
sequence length(number of frames). The speaker embedding vector, extracted from Layer 7 (in bold)

System Approach Speaker Embedding Back-end Set EER(%) || min_C || act.C
Training Data Training Data

BGU 1 TDNN Voxceleb SRE18/19 SRE20 8.27 0.521 || 0.644
Test

BGU 2 ETDNN Voxceleb SRE_SWBD_LRE_-MX6 || SRE20 3.73 0.164 | 0.181
SRE_SWBD_LRE_-MX6 SRE18/19 Test

BGU 3 FTDNN Voxceleb SRE_SWBD_LRE_MX6 || SRE20 3.84 0.159 || 0.178
+ skip connections || SRE_SSWBD_LRE_MX6 SRE18/19 Test

BGU 4 Resnet+LDE Voxceleb SRE_SWBD_LRE_MX6 || SRE20 3.55 0.147 || 0.153
+ Angular-softmax || SRE_SWBD_LRE_MX6 SRE18/19 Test

FUSION BGU 24 SRE20 2.85 0.124 || 0.134
Test

Table 5. EER: Equal Error Rate, min_C:Minimum Decision Cost Function, act_C: actual Decision Cost Function. all the x-
vector extractors trained with augmented data. the ”with augmentation” refer to the PLDA adaptation in-domain data.

