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ABSTRACT 

 

In this paper, we present our submitted XMUSPEECH 
system for NIST SRE20 CTS Challenge and SRE21 
Evaluation. With the large amounts of data assimilated 
into training set, the diversity of training data sources 
inevitably leads to domain mismatch, which becomes a 
key factor affecting the system performance. In order to 
solve this problem, we have made a lot of attempts. 
Based on the x-vector framework, we used different 
network structures, and tried to modify the performance 
of factorized time delay deep neural network (F-TDNN) 
and residual network (ResNet). In addition, in the back-
end classifier, we used domain adaption to eliminate the 
impact of domain mismatch. We also employed Adaptive 
Symmetric Score Normalization (AS-Norm) for score 
normalization to adjust the fractional distribution space. 
These attempts have enriched the diversity of our 
systems, enabling the fusion system to complement each 
subsystem and improve the final submission 
performance. In addition, we describe the processing of 
video-only track based on the development set. 
 

Index Terms— SRE21, x-vector, ResNet, AS-Norm, 

domain mismatch, video 

 

1. INTRODUCTION 

 

The Speaker Recognition Evaluation, sponsored by the US 

National Institute of Standards and Technology (NIST), has 

been one of the most representative contests in speaker 

recognition since 1996. Research teams from all over the 

world constantly explore new algorithms and state-of-the-art 

technologies for speaker recognition. SRE21 is organized 

similar to SRE19, focusing on speaker detection over 

conversational telephone speech (CTS) and audio from 

video (AfV) [1]. In addition to the audio-only track, SRE21 

also features a visual-only track and an audio-visual track 

involving automatic person detection using audio, image, 

and video material.  

SRE21 offers both fixed and open training conditions to 

allow uniform cross-system comparisons and to understand 

the effect of additional and unconstrained amounts of 

training data on system performance. For the fixed training 

condition, the baseline speaker recognition system is 

developed using the NIST SRE CTS Superset 

(LDC2021E08) [2] and VoxCeleb2 [3] datasets. 

Since this evaluation provides options for open training 

data, it will inevitably lead to the introduction of large-scale 

publicly available data sets for system development. It is 

conceivable that the domain mismatch between individual 

data sets and test data will arise due to the different 

collection environment of data sets. We started the system 

development work for this challenge and tried to eliminate 

the performance degradation caused by the domain 

mismatch. 

The first thing we thought of is to increase the diversity 

of subsystems, and it is most convenient to extract different 

acoustic features for training. In our experiments, two types 

of features (MFCC and FBank) have been employed for 

training. And it is necessary to find a robust training system 

based on x-vector [4]. In terms of network structure, we 

mainly explored F-TDNN [5] and ResNet [6]. F-TDNN 

factorizes the parameter matrices into smaller matrices, 

which makes the training more efficient. And ResNet can 

learn a lot of detailed temporal information. 

Following the extraction of x-vector, we used 

probabilistic linear discriminant analysis (PLDA) [7] for the 

back-end scoring. We also employed centering, whitening, 

LDA, domain adaption and length normalization on x-vector 

before scoring. These have played an important role in 

eliminating domain mismatches. After the scoring, we also 

tried AS-Norm [8] to optimize the distribution of scores.  

On the other hand, in the video-only track, we use the 

officially recommended InsightFace based on ResNet101 

model [16] for our face recognition. We obtain the results of 

equal error rate (EER) and minimal detection cost function 

(min_DCF) based on the development set of multimedia 

corpus. 

The rest of the paper is organized as follow: Section 2 

gives the description of datasets and acoustic feature 

extraction. In Section 3, we described the details of the 

subsystems we developed for SRE21. Section 4 illustrates 

the back-end and score normalization. In Section 5, we 

report the result of our subsystems for SRE20 CTS 

Challenge. Section 6 describes the video-only track 

developed for face recognition and its data processing step. 

Finally, we conclude our work in Section 7. 



 

2. DATA PREPARATION 

 

2.1. Datasets 

The fixed training condition designates a common set to 

facilitate a uniform algorithmic comparison of systems. For 

this condition, we only use NIST SRE CTS Superset 

(LDC2021E08) for the common training data, which is 

named as Train-fixed.  

For the open training condition, we use the corpuses of 

NIST SRE04, 05, 08, 10 and SRE12-tel, which is named as 

Train-open. 

We also employ additive noises and reverberation (i.e., 

Babble, Noise, Music and Reverb from MUSAN [9] and 

reverberation [10]) as described in [4] to augment the 

training data. This operation can make the systems more 

robust, and alleviate the problem of training data domain 

mismatch. 

 

2.2. Acoustic feature extraction 

2.2.1. MFCC 

For the Mel frequency cepstral coefficient (MFCC) feature 

extraction, all audios were converted to the cepstral features 

of 23-dimensional MFCC with a frame-length of 25ms and 

a frame shift of 10ms. The cepstral filter banks were 

selected within the range of 20 to 3700 Hz. Then, a frame 

level energy-based voice activity detector (VAD) selection 

was conducted to the features. This was followed by local 

cepstral mean and variance normalization (CMVN) over a 

3-second sliding window. All operations of feature 

extraction were based on Kaldi toolkit [11]. 

 

2.2.2. FBank 

The other subsystems were based on the filter bank (FBank) 

feature. The FBank feature retains a lot of raw information, 

which makes it possible for the neural network to learn more 

useful information. Of course, this also requires the neural 

network itself to have strong modeling capability. The 

FBank feature vectors include 80 dimensional FBanks and 

energy value extracted from the raw signal with a 25ms 

frame-length. Similar to MFCC, VAD and CMVN were also 

used for FBank features. 

 

3. SUBSYSTEMS 

 

The final submitted system is based on the fusion of several 

x-vector systems with different datasets and features. In this 

section we will introduce the details of each subsystem. 

 

3.1. Factorized TDNN x-vector systems 

The core trick of F-TDNN is factorizing matrices with a 

semiorthogonal constraint. This obviously reduces the 

amount of parameters and proves that there is no loss of 

modeling capability through the singular value 

decomposition (SVD). The configuration of the first two 

factorized TDNN x-vector systems could be found in [12]. 

•F-TDNN-v1: Factorized TDNN x-vector trained on 5-

fold Train-open with 23-dimension MFCC features. 

•F-TDNN-v2: Factorized TDNN x-vector trained on 5-

fold Train-open with 81-dimention FBank features. 

 

3.2. ResNet x-vector systems 

ResNet models are optimized based on the AM-
Softmax loss. 
•ResNet-34: ResNet-34 trained on 5-fold Train-open 

with 81-dimention FBank features. 

•ResNet-50: ResNet-50 trained on 5-fold Train-open 

with 81-dimention FBank features.  

•ResNet-34-SE: ResNet-34-SE trained on 5-fold Train-

open with 81-dimention FBank features. 

•ResNet-50-SE: ResNet-34-SE trained on 5-fold Train-

open with 81-dimention FBank features. 

For ResNet-34 and ResNet-50, we extract the far and 

near embeddings (corresponding to the output layer) from 

the first and second layer after the statistic pooling layer. 

For the far embedding, PLDA scoring is used. And for the 

near embedding, Cosine scoring is adopted. These two kinds 

of scores are fused for that model. In our experiments, all 
the subsystems were implemented on ASV-Subtools [14]. 
 

4. BACK-END 

 

4.1. Scoring 

For all the systems above, the PLDA of the system was 

trained using embeddings of the 5-fold training data since 

the PLDA is sensitive to the domain. For the post-

processing of the embeddings extracted from the embedding 

extractors, length normalization, centering, whitening and 

LDA transformation for feature dimensionality reduction 

have been applied to the embeddings in sequence, finally 

followed by the PLDA training. Furthermore, the PLDA 

parameters are adapted on the in-domain data. All scores of 

subsystems were estimated using the adapted PLDA 

(APLDA). 

 

4.2. Score normalization and fusion 

We also applied the AS-Norm [13] to compare the 

performance. However, it only helps the Cosine scoring to 

reduce the act_C result but still can’t surpass the APLDA 

scoring in our experiments. 

 

5. RESULTS OF AUDIO TRACK 

 

We present the experimental results on the progress set of 

SRE20 CTS challenge, since we can’t obtain the results on 

the test set of SRE21. The results of all subsystems are 

shown in Table 1. The fusion rate of APLDA and Cosine 

scoring for ResNet-34 and ResNet-50 are 7:3 and 5:5 

respectively. ResNet-50-SE-r4 adopts the reduced learning 

late (0.0025), which is different with ResNet-50-SE. 

 



Table 1. The results of subsystems on the progress set of 

NIST SRE 20 CTS Challenge 

System 

SRE20 progress set 

EER (%) min_C act_C 

F-TDNN-v1 5.48 0.220 0.223 

F-TDNN-v2 4.67 0.222 0.227 

ResNet-34-SE 4.41 0.196 0.199 

ResNet-50-SE 4.47 0.187 0.189 

ResNet-34 3.67 0.178 0.194 

ResNet-50 3.89 0.180 0.188 

ResNet-50-SE-r4 4.50 0.188 0.193 

Fusion 3.11 0.154 0.160 

 

From the act_C results, we can see the best subsystem 

is ResNet-50. Most the ResNet-50 subsystems are better 

than ResNet-34, which shows that Bottleneck-Block is 

superior compared with Basic-Block. We also find that 

adding SE-block can’t lead to further improvement. Finally, 

we fused all seven subsystems with the same weight and 

obtained the act_C of 0.160. We submitted this fusion 

system for the SRE21-Open task.  

For the SRE21-Fixed task, we only trained the ResNet-

34-SE on 5-fold Train-open with 81-dimention FBank 

features, and submitted the result of this single system. 

 

6. VISUAL-ONLY SYSTEM 

 

The 2021 NIST multimedia SRE recognizes a person 

through the fusion of audio and video. Therefore, each video 

provides personal voice segment and face information at the 

same time. The visual system is to detect whether the target 

person exists in another test video. The baseline face 

recognition system is built using Pytorch based on the 

InsightFace with a face detector termed RetinaFace [17], 

and a face embedding extractor using a ResNet101 

architecture, and utilizes a pre-trained model which has been 

trained on MS-Celeb-1M dataset [18]. In this section, we 

will show our processing of visual-only track. 

 

6.1. Face detection 

We use ffmpeg to extract one frame per second to process 

the development set test video. Then, on the extracted 

frames, we apply RetinaFace face detector to select the 

frames with faces, and get the bounding boxes of all faces in 

each frame. Next, we cut out the face image through the 

bounding box, align it with the 5-point facial landmark 

model, and finally resize the image to 112×112 pixels and 

normalized. 

  

6.2. Face embedding 

The face embeddings are extracted using InsightFace, and 

the pre-trained ResNet101 model is used to extract face 

encodings from the cropped, aligned,and normalized resized 

images. 

 

6.3. Score 

We use kmean++ algorithm [19] to classify per video and 

get its center vector. Then, in the enrollment process, the 

cosine similarity between the enrollment image and the 

center vector of each video is calculated as the output score. 

Finally, we obtained the EER of 2.08% and min_DCF of 

0.036 for the development set. The results are compared 

with the baseline system in Table 2. 

 

Table 2. The results of development set of Visual Track 

System EER (%) min_DCF 

Baseline 1.82 0.035 

Ours 2.08 0.036 

 

Due to time constraint, we did not submit the results on 

Visual and Audio-Visual Track. 

 

7. CONCLUSION 

 

We have presented the description of the XMUSPEECH 

submission to SRE 20 CTS Challenge and SRE 21 

Evaluation. In view of the large amount of training data and 

the domain mismatch problem, we have made various 

attempts in network structures, back-end scoring and score 

normalization. Different network structures greatly enhance 

the diversity and complementarity of our systems. These 

attempts have eliminated the impact of domain mismatch to 

some extent from different stages, allowing our final fusion 

system to achieve great improvement in comparison with 

the subsystems. And our results on the visual-only track is 

close to the NIST baseline system. 
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