
THUEE SYSTEM DESCRIPTION FOR NIST 2020 SRE CTS CHALLENGE

Yu Zheng1, Miao Zhao1, Yufeng Ma1, Min Liu1, Xinyue Ma2,
Tianyu Liang2, Tianlong Kong2, Liang He2*, Minqiang Xu1*

1SpeakIn Technologies Co. Ltd., ShangHai, China
2Department of Electronic Engineering Tsinghua University, Beijing, China

ABSTRACT

This document presents SRE20 system description for the
joint effort of the teams at Speakin and department of
electronic engineering Tsinghua university (THUEE). The
subsystems including ResNet34, ResNet74, ResNet152,
RepVGG B2, EFTDNN LSTMP, EFTDNN SE and ETDNN-
LSTMP are developed in this evaluation.

Index Terms— NIST2020 SRE CTS challenge, ResNet,
RepVGG, EF-TDNN, LSTMP, additive margin , refinement

1. INTRODUCTION

The THUEE submission is the joint effort of the teams at
Speakin and the department of electronic engineering Ts-
inghua university (THUEE). We worked as two sub-teams
until the final part of the evaluation. The subsystems, in-
cluding ResNet34, ResNet74, ResNet152, RepVGG B2,
EFTDNN LSTMP, EFTDNN SE, ETDNN LSTMP were
developed in this evaluation. All the subsystems contained
a deep neural network followed by scoring and calibration.
The ResNet74 and ResNet152 systems use cosine distance
to score the trials, while ResNet34, EFTDNN and ETDNN
based systems use adapted PLDA backend without adaptive
symmetric score normalization. For each system, we describe
the data involved in training, the system setup and their hyper-
parameters. Finally, we report the experiment results of each
subsystem and the fusion system on the SRE18 developing
set, SRE19 evaluation set and SRE20 progress set.

2. DATASETS

2.1. Training dataset

The datasets used for training included:

• Our own Chinese telephone data (CHI-tel).

• NIST SRE04-10.

• NIST SRE12 telephone data (SRE12-tel).

*Corresponding author: heliang@mail.tsinghua.edu.cn
xuminqiang@speakin.ai

• NIST SRE16 telephone data (SRE16-tel).

• NIST SRE18 evaluation datasets.

• NIST SRE19 evaluation datasets.

• VoxCeleb 1+2.

• Switchboard phase1-3.

• MIXER6 telephone phone calls (MX6-tel).

• LibriSpeech.

In total, there are 255214 speakers in this dataset.We col-
lected Chinese telephone data (CHI-tel) for a total of 230,000
speakers. We applied the following techniques to augment
each utterance:

• Adding reverberation: artificially reverberation using a
convolution with simulated RIRs from the AIR dataset

• Adding music: taking a music file (without vocals) ran-
domly selected from MUSAN[1], trimmed or repeated
as necessary to match duration, and added to the origi-
nal signal (5-15dB SNR).

• Adding noise: MUSAN noises were added at one sec-
ond intervals throughout the recording (0-15dB SNR).

• Adding Babble: MUSAN speech was added to the orig-
inal signal (13-20dB SNR).

2.2. Development dataset

SRE19-dev dataset was used for fusion and calibration.
SRE18-CMN2 was used for evaluation.

3. SYSTEMS

3.1. ResNet

We used ResNet-74 and ResNet-152 in our systems.



3.1.1. Data preparation

We used all the data described above for training. All 16 kHz
recordings were downsampled to 8 kHz using ffmpeg. We
used 64 log Mel-filter bank energies with a 25 ms window size
and a time shift of 10 ms. Mean normalization was applied
using a moving window of 3 seconds. The Kaldi [2] energy
VAD was used to detect speech activity.

3.1.2. Architecture description

The block to build resnet was bottleneck [3] .The base channel
was 64. The block numbers of resnet74 and resnet152 were
(3, 4, 14, 3) and (3, 8, 36, 3). A statistics pooling layer was
used to aggregate along the time across.

3.1.3. Loss function

Additive margin softmax(AMsoftmax) and angular soft-
max(AAMsoftmax) is proposed in[4] [5]. We combine them,
add penalty to both angle and angle cosine, and call it CM-
softmax.The loss function is defined as:

L = − 1

n

n∑
i=1

log
es[cos(θyi+m1)−m2]

es[cos(θyi+m1)−m2] +
∑
i 6=yi e

scosθj
(1)

where cosθyi = wTyifi/ ‖wyi‖ ‖fi‖, wyi is the weight vector
of class fi , and fi is the sample input. Also, s is the scale
factor andm1 andm2 are penalty margins for angle and angle
cosine.

3.1.4. training

Since most of our training data is Chinese speech data, there
will be domain gaps during the evaluation phase. Therefore,
the training was divided into two stages.The first stage used
all the training data, and the second stage performed model
refinement [6], in-domain data was used to further finetune
the first stage model. The detailed parameters of training are
as follows:

• stage 1 All of the DNN architectures were trained us-
ing PyTorch with data parallelism over 8 Nvidia 3090
RTX GPUs. All data in section 2.1 were used for train-
ing.Therefore, the number of nodes in the last layer of
the network was 255214. We used SGD with momen-
tum (set to 0.9) with a batch size of 320. Four seconds
slice of audio was selected to train our model for each
speech segment.
In this stage, we adopted ReduceLROnPlateau sched-
uler with a frequency of validating every 8,000 itera-
tions, and the patience was 2. The minimum learning
rate was 1.0e-6, and the decay factor is 0.5. Further-
more, the m1 gradually increased from 0 to 0.2 [7]
and m2 gradually increased from 0 to 0.1. Then a
modelbase was selected.

• stage 2 The training data at this stage is NIST SRE04-
10 + NIST SRE18 eval + NIST SRE19 eval, 4596
speakers in total. And the number of nodes in clas-
sifier is set to 4596. Initialize the network with the
modelbase. Since the number of nodes in the last
layer of the current network is different from that of
modelbase, and the training data is a subset of all
dataset, extract the weight of the 4596 speakers in
modelbase as the initial weight of the current classifier.
The chunk size is 1000,m2 is 0,m1 increases exponen-
tially from 0.2 to 0.8 in 4000 iterations. The detection
frequency of the validation is 2000 steps while the
batchsize is 160. In this stage, we increased the chunk
size to 1000. m2 was 0, and m1 increased exponen-
tially from 0.2 to 0.8 in 4000 iterations. The detection
frequency of the validation was 2000 steps while the
batchsize was 160.

3.2. RepVGG

In our previous work, we have proved that the repvgg
structure[8] is very effective in speaker recognition.We select
RepVGG-A2 as our backbones. The model adopt 64 base
channels. Other parts of the network structure and training
methods are the same as ResNet.

3.3. Extended F-TDNN with additional modules

3.3.1. Data Usage

There are a huge amount of training data available for system
development under open condition. Specially, training data
includes SRE04-10, MIXER6, Switchboard (SWBD), Vox-
celeb 1&2 and Fisher datasets. These datasets (i.e., SRE,
SWBD, Voxceleb) are augmented by different folds for differ-
ent systems after convolving with far-field Room Impulse Re-
sponses (RIRs), or by adding noise from the MUSAN corpus.
The operation of data augmentation is dependent on Kaldi x-
vector recipe. Speaker filtering criterion is applied to training
datasets. All speakers with less than 8 utterances and less than
400 frames per utterance were excluded for training.

3.3.2. Architecture Description

Inspired by the success of E-TDNN and F-TDNN, we ex-
plored a deeper and wider version of the F-TDNN in [9],
called extended factorized TDNN (EF-TDNN). As for basic
EF-TDNN architecture summarized in Table 1 without long
short-term memory with projection (LSTMP) [10] layer, the
19th layer is fully connection layer. Instead of factorizing the
TDNN layer into a convolution times a feed-forward layer,
we have a F-TDNN layer with a constrained 2 × 1 convolu-
tion to dimension 256, followed by another constrained 2× 1
convolution to dimension 256, followed by a 2 × 1 convo-
lution back to the hidden-layer dimension (eg. 1024). The



Table 1. Extended Factorized TDNN with LSTMP
Layer Layer Type

Context
factor1

Context
factor2

Context
factor3

Skip conn,
from layer Size

Inner
size

1 TDNN-ReLU t-2 : t+2 512
2 Dense-ReLU t 512
3 F-TDNN-ReLU t-3, t-1 t-1, t+1, t+1, t+3 1024 256
4 Dense-ReLU t 1024
5 F-TDNN-ReLU t t t 1024 256
6 Dense-ReLU t 1024
7 F-TDNN-ReLU t-5,t-2 t-2, t+1 t+1, t+4 1024 256
8 Dense-ReLU t 1024
9 F-TDNN-ReLU t t t 5 1024 256

10 Dense-ReLU t 1024
11 F-TDNN-ReLU t-5, t-2 t-2, t+1 t+1, t+4 1024 256
12 Dense-ReLU t 1024
13 F-TDNN-ReLU t-5,t-2 t-2, t+1 t+1, t+4 3, 7 1024 256
14 Dense-ReLU t 1024
15 F-TDNN-ReLU t-5, t-2 t-2, t+1 t+1, t+4 1024 256
16 Dense-ReLU t 1024
17 F-TDNN-ReLU t t t 7, 11, 15 1024 256
18 Dense-ReLU t 1024
19 LSTMP t 1024
20 Dense-ReLU t 2048
21 Pooling (mean+stddev) full-seq 2× 2048
22 Dense-ReLU 1024
23 Dense-ReLU 1024
24 Dense-Softmax N spks.

dimension now goes from, 1024 −→ 256 −→ 256 −→ 1024,
within one layer. We adopted AMsoftmax with m = 0.15 as
loss function for following systems.

• EFTDNN LSTMP The architecture is shown in Table
1. Compared with basic EF-TDNN, the 19th layer is
replaced by LSTMP [10], a recurrent layer. LSTMP is
combination of two improved methods. One is to in-
troduce a recurrent projection layer between the LSTM
layer and the output layer. The other is to introduce an-
other non-recurrent projection layer to increase the pro-
jection layer size without adding more recurrent con-
nections. In our LSTMP layer, it has 1024-dimensional
cell, 512 recurrent and non-recurrent projection dimen-
sions. In addition, we also designed ETDNN LSTMP
based on ETDNN [11] in the same way, .

• EFTDNN SE Squeeze-and-excitation (SE) block [12]
includes two steps, namely squeeze and excitation
operations. SE block only takes into account the im-
portance of features on different channels to generate
new feature map with channel attention. Further de-
tails about SE can be found in [12]. EFTDNN SE
system mainly changes the structure of F-TDNN layer
by adding SE layer into it. Basic F-TDNN layer has
three stages, but F-TDNN layer in EFTDNN SE has
four stages including a constrained 2×1 convolution to
dimension 256, followed by another constrained 2 × 1
convolution to dimension 256, followed by a SE layer
setting reduction ratio as 16, and then followed by a
2× 1 convolution back to the hidden-layer dimension.

3.3.3. Training Details

Subsystems in this subsection were trained using Kaldi recipe
and tensorflow. We used SGD setting momentum 0.9 as opti-

mizer with a batch size of 128. Learning rate is set to 0.004.
When loss on valid dataset did not decrease for 4 epochs, the
learning rate halved. Stop training until the learning rate is
less than 1.0e-6.

4. SCORING

Originally, we used plda as the backend of the CNN network
and SRE18 eval + SRE19 eval as the backend training data.
When we used a small-scale network, the results of the plda
backend were better than the results of cosine. But with the
increase of the model size and the addition of the refinement
strategy, the result of plda degraded while the result os cosine
score improved. Finally, the cosine result surpassed the one
of plda. We used cosine distance for scoring.

5. FUSION AND CALIBRATION

All of our individual systems were calibrated using logistic
regression on the SRE19 dev data. The fusions were equal
weighted averages of the scores of the systems.

6. RESULTS

Table 2 presents the two subsystems trained for this chal-
lenge. Their performance is evaluated on the SRE18 dev
CMN2 set and SRE20 progress set. All of our subsystems
were calibrated independently using logistic regression on the
SRE19 dev data. The fusion was an equal weighted average
of the scores of the systems. The main problem identified in
this challenge was the out-of-domain training speech corpora.
The key to the problem was how to use the data when there
was few matching data.

Table 3 presents the some subsystems trained with differ-
ent acoustic features for this challenge. Their performance
is evaluated on the SRE19 EVAL CMN2 set and SRE20
progress set. The final observation from experiments is that
domain adaptation of PLDA and adaptive symmetric score
normalization (AS-Norm) is not useful to reduce EER and
min-DCF. As for the data for LDA/PLDA adaptation, it is
achieved by filtering more adaptive datasets according to the
results on the leaderboard. Fused systems in table 3 is the lin-
ear fusion of some subsystems by BOSARIS Toolkit. Before
the fusion, each score is calibrated with PAV from BOSARIS
toolkit [13] on SRE19 EVAL set.

7. REFERENCES

[1] Guoguo Chen David Snyder and Daniel Povey, “Mu-
san: A music, speech, and noise corpus,” arXiv preprint
arXiv:1510.08484, 2015.

[2] Gilles Boulianne Lukas Burget Ondrej Glembek Nagen-
dra Goel Mirko Hannemann Petr Motlicek Yanmin Qian



Table 2. Fused systems on the SRE21 DEV set.

System scoring SRE18 DEV CMN2 SRE20 PROGRESS SET SRE20 TEST SET
eer minc eer minc act eer minc act

ResNet74 cos 2.477 0.083 2.40 0.072 0.084 - - -
ResNet152 cos 2.528 0.084 2.37 0.066 0.085 - - -
RepVGG b2 cos 2.560 0.103 2.12 0.068 0.082 - - -

fused cos - - 2.23 0.063 0.076 2.53 0.061 0.068

Table 3. Performance of partial systems on the SRE19 EVAL CMN2 and SRE20 PROGRESS SET

System Feature SRE19 EVAL CMN2 SRE20 PROGRESS SET

EER(%) min-DCF EER(%) min-DCF act-DCF

EFTDNN LSTMP PLP 6.69 0.462 4.51 0.197 0.202
ETDNN LSTMP MFCC 5.73 0.443 4.51 0.197 0.202

EFTDNN SE MFCC 6.68 0.461 4.23 0.180 0.186
EFTDNN SE PLP 6.51 0.458 4.58 0.181 0.185

ResNet34 MFCC 5.32 0.417 3.11 0.146 0.293

Fused system - 5.06 0.364 3.17 0.138 0.148

Petr Schwarz et al. Daniel Povey, Arnab Ghoshal, “The
kaldi speech recognition toolkit,” IEEE 2011 work-
shop on automatic speech recognition and understand-
ing. IEEE Signal Processing Society, pp. number EPFL–
CONF–192584, 2011.

[3] Shaoqing Ren Kaiming He, Xiangyu Zhang and Jian
Sun., “Deep residual learning for image recognition,”
CVPR, 2016, p. 770–778.

[4] W. Liu F. Wang, J. Cheng and H. Liu, “Additive margin
softmax for face verification,” IEEE Signal Processing
Letters, vol. 25, 2018.

[5] J. Guo J. Deng and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” CoRR,
vol. abs/1801.07698, 2018.

[6] J. Guo J. Deng and S. Zafeiriou, “The idlab voxsrc-
20 submission: Large margin fine-tuning and quality-
aware score calibration in dnn based speaker verifica-
tion,” ICASSP 2021-2021, vol. abs/1801.07698, pp.
5814–5818, 2021.

[7] B. Desplanques J. Thienpondt and K. Demuynck, “The
idlab voxceleb speaker recognition challenge 2020 sys-
tem description,” arXiv preprint arXiv:2010.12468,
2020.

[8] Miao Zhao, Yufeng Ma, Min Liu, and Minqiang Xu,
“The speakin system for voxceleb speaker recognition
challange 2021,” arXiv preprint arXiv:2109.01989,
2021.

[9] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li,
Hainan Xu, M. Yarmohammadi, and S. Khudanpur,

“Semi-orthogonal low-rank matrix factorization for
deep neural networks,” in INTERSPEECH, 2018, p.
3743–3747.

[10] H. Sak, A. Senior, and F. Beaufays, “Long short-term
memory based recurrent neural network architectures
for large vocabulary speech recognition,” ArXiv, vol.
abs/1402.1128, 2014.

[11] Jesus Villalba, Nanxin Chen, David Snyder, Daniel
Garcia-Romero, Alan McCree, and etc, “The JHU-MIT
System Description for NIST SRE18,” in NIST Speaker
Recognition Evaluation Workshop, 2018.

[12] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and E. Wu,
“Squeeze-and-excitation networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 42,
pp. 2011–2023, 2020.

[13] N. Brümmer and E. de Villiers, “The BOSARIS Toolkit:
Theory, Algorithms and Code for Surviving the New
DCF,” arXiv e-prints, Apr. 2013.


