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ABSTRACT

This manuscript describes the I4U submission to the 2020
NIST Speaker Recognition Evaluation (SRE’20) Conver-
sational Telephone Speech (CTS) Challenge. The I4U’s
submission was resulted from active collaboration among
researchers across eight research teams – I2R (Singapore),
UEF (Finland), VALPT (Italy, Spain), NEC (Japan), THUEE
(China), LIA (France), NUS (Singapore), INRIA (France)
and TJU (China). The submission was based on the fusion
of top performing sub-systems and sub-fusion systems con-
tributed by individual teams. Efforts have been spent on the
use of common development and validation sets, submission
schedule and milestone, minimizing inconsistency in trial list
and score file format across sites.

1. INTRODUCTION

The I4U submission is a joint effort of cross-site research
teams - I2R (Singapore), UEF (Finland), Loquendo and Po-
litecnico di Torino (Italy), VivoLab and Agnitio (Spain),
NEC (Japan), THUEE (China), LIA (France), NUS (Singa-
pore), INRIA (France) and TJU (China). The SRE’20 CTS
Challenge is an extension to the SRE’19 CTS task with an
additional challenge being multi-lingual evaluation set. We
paid significant efforts in keeping a common training and de-

velopment set, submission schedule and milestone, minimiz-
ing inconsistency in trial lists across sites. This manuscript
presents the technical details of the datasets, sub-systems
development, and fusion system.

We adopted a fusion strategy where sub-systems are fused
with sub-fusion systems. These sub-systems are based on lat-
est advances in neural speaker embeddings, namely, x-vector
variants [1–6] and xi-vector [7]. All sub-systems developed
in I4U adhere to the same development and validation sets as
shown in Table 1. We created a common customized devel-
opment set (I4U dev) comprising of sre18-dev and sre16-eval
(30% trials) since there is no specified dev set in SRE’20.
Most parts of the training set were provided by NIST and
LDC as listed in Table 2. Given the open training condition
in SRE’20, each site uses a slightly different training set, with
additional data from various sources, which we describe in
the following sections.

Table 1. Common data partitioning across all sites.

Partitions Dataset

Development set (a) sre18-dev, sre16-eval (30%)
Evaluation set (b) sre20 cts challenge
Train set All datasets except (a) and (b)



Table 2. Train set used for open training condition.

Corpora Source

sre16-eval (30%) LDC, NIST
SRE’18-dev, SRE’18-eval
SRE’19-eval
SRE’04, 05, 06, 08, 10, 12
Switchboard-2 Phase I & II & III
Switchboard Cellular Part 1 & 2
Mixer6
Fisher 1 & 2

VoxCeleb 1 & 2 Open
Private video data set

2. FEATURE EXTRACTION

A summary of feature extractors of all subsystems is dis-
played in Table 3. We describe them in per-system fashion.

I2R/NUS/Vivolab: We consider mel frequency cepstral
coefficient (MFCC) as feature for developing our system. For
every utterance, 23-dimensional MFCC features are extracted
considering short-term processing by using Hamming win-
dowed frame of 25 ms with a shift of 10 ms. The feature
extraction involves 23 mel filetbanks. In addition, the frames
with sufficient voice activity are retained by performing an
energy-based VAD.

LIA: For every utterances, 60-dimensional Filter-Banks
(FBanks) features are extracted considering short-term pro-
cessing by using Hamming windowed frame of 25 ms with a
shift of 10 ms. A cepstral mean normalization is applied with
a window size of 3 seconds. In order to removes silence and
low energy speech segments, we used an energy-based VAD.

Loquendo and Politecnico di Torino: We extracted a
single set of features for training all the Loquendo DNN em-
bedding systems employed in this evaluation: 46 Log Mel
Bands parameters with short time centering (STC) computed
on both speech and non-speech audio frames. We used a VAD
based on neural network (NN) phonetic decoding. The de-
coders are hybrid HMM-NN models trained to recognize 11
phone classes. The NN used for the VAD is a multi-layer
perceptron that estimates the posterior probability of phonetic
units, given an acoustic feature vector. It has been trained on
several Speechdat corpora related to different European lan-
guages (e.g., English UK, French, German, Italian, Spanish,
etc.) using approximately 600 hours of speech.

TJU: We consider log mel filterbanks (LogMEL) as
feature for developing our system. For every utterance,
80-dimensional LogMEL features are extracted considering
short-term processing by using Hamming windowed frame
of 25 ms with a shift of 10 ms. Besides, sentence-level mean
and variation normalization is emloyed for feature postpro-
cessing.

UEF: 30-dimensional Power-normalized cepstral coeffi-
cients (PNCCs) are employed. Our feature extractor differs
from the original work [8] by several means: 1) We use mel
filterbanks [9] instead of Gammatone filterbanks, with num-
ber of triangular filters same as feature dimension. We do not
observe notable difference on individual system performance
in pilot experiments between the two; 2) We do not perform
discrete cosine transform (DCT) as post-processing step on
the output of power-law nonlinarity. Other operations and re-
lated parameters remain same as original work in [8].

3. EMBEDDINGS AND CLASSIFIERS

3.1. X-vector Neural embedding

3.1.1. Extended TDNN

The Extended-TDNN [2] neural network is an evolution of
the classic x-vector network [1], increasing its depth along
the frame-level processing block by alternating TDNN layers
with feedforward ones. This network is trained according to
two different losses: the traditional cross-entropy as well as
additive angular margin loss [10].

3.1.2. Densely Connected TDNN

Densely connected time-delay neural network (D-TDNN) has
been proposed in [3]. Its basic unit layer differs from the
vanilla TDNN layer by cascading a fully-connected DNN and
a TDNN with context expansion. Each of the layers are led by
a ReLU activation. The network includes aggregated connec-
tion for multiple D-TDNN layers. Our implementation differs
from the original network by two aspects: 1) We use attentive
statistics pooling (ASP) instead of high-order statistics pool-
ing; 2) When training the network we use additive angular
margin softmax function, instead of cosine-based softmax.

3.1.3. ECAPA TDNN

The ECAPA TDNN architecture has been originally pre-
sented in [5]. We observed that the architecture is less
accurate for telephonic speaker recognition than the other
technological solutions considered, even if it is still moder-
ately helpful for embeddings fusion. The main positive aspect
is the fast training and inference time.

3.1.4. NEC 43-LAYERS RESNET

The NEC 43-LAYERS RESNET architecture has been pro-
posed in [4]. This kind of DNN model is very deep, it includes
many residuals connections, and it is accurate for telephonic
speaker identification. We considered a few implementations
with variations in the training and the DNN structure. The
most notable solution exploits 53 instead of 43 layers.



Table 3. Summary of front-end processing components for each subsystem.

I2R/NUS/Vivo LIA Loquendo TJU UEF

Feature set MFCC Fbanks LogMEL LogMEL PNCC
# Features 23 60 46 80 30
# Filters 23 60 46 80 30
Framing 25ms/10ms 25ms/10ms 25ms/10ms 25ms/10ms 25ms/10ms
Window Hamming Hamming Hamming Hamming Hamming

SAD Energy Energy DNN Energy Energy
NFFT 512 512 256 400 512

Postprocessing x Mean Short-Time Centering Mean & Variation Norm x

3.1.5. JHU MAGNETO 34-LAYERS RESNET

The JHU MAGNETO 34-LAYERS RESNET topology is de-
scribed in [11]. It is based on modified 2D-CNN ResNet-34
architecture. It is by far the slower solution both for train-
ing and run-time inferencing because of the presence of 2D
Convolutions, whereas all the other considered topologies use
1D Convolution. However, this DNN can achieve extremely
good accuracy, in particular for short-duration conditions. We
trained many different variants for this architecture to fully
exploit its potential. In general, we observed some variability
in terms of accuracy, so that the weight initialization and the
training hyperparameters seem to be important concerns.

3.1.6. FTDNN RESNET

The FTDNN RESNET is a deep ResNet architecture exploit-
ing semi-orthogonal ’factorized’ TDNN layers as proposed
in [12]. This provides very good accuracy results for the
SRE20 CTS challenge, and it is also much faster than the JHU
MAGNETO 34-LAYERS RESNET, in terms of training and
run-time computation.

3.2. Xi-vector Neural embedding

Xi-vector is the Bayesian counterpart of the x-vector, taking
into account the uncertainty estimate. X-vectors, and sim-
ilar forms of deep speaker embedding, do not consider the
uncertainty of features. In a restricted sense, uncertainty is
merely captured implicitly with empirical variance estimates
at the utterance level. Consequently, they show low robust-
ness against local and random perturbation which is the inher-
ent property of speech utterances. On the technology front,
xi-vector offer a simple and straightforward extension to x-
vector. It consists of an auxiliary neural net predicting the
frame-wise uncertainty of the input sequence. On the theo-
retical front, xi-vector integrates the Bayesian formulation of
linear Gaussian model to speaker-embedding neural networks
via the pooling layer. In one sense, xi-vector integrates the
Bayesian formulation of the i-vector to that of the x-vector.
Hence, we refer to the embedding as the xi-vector, which is
pronounced as /zai/ vector. We refer interested readers to [7].

4. SUB-SYSTEM DESCRIPTION

Listed below are the descriptions of the component classifiers
used for I4U fusion. Neural embeddings were used in all sub-
systems, with substantial enhancement in terms of network
architecture and loss function.

4.1. I2R

4.1.1. Front-end

We used xi-vector embedding with a simple five-layer TDNN.
The training set consists primarily of English speech cor-
pora, which encompasses Switchboard, Fisher, and the
MIXER corpora used in SREs 04 – 06, 08, and 10. We
used 23-dimensional MFCCs with 10ms frameshift. Mean-
normalization over a sliding window of 3s and energy-based
VAD were then applied. Data augmentation [13] was per-
formed on the training sets using the MUSAN dataset [14].

4.1.2. Back-end

Probabilistic linear discriminant analysis (PLDA) was used
as the back-end. As in most state-of-the-art implementations,
speaker embeddings were reduced to 200 dimensions via lin-
ear discriminant analysis (LDA) projection before PLDA.

4.2. LIA

4.2.1. Additional Training Corpora

The LIA Training corpora used for training the DNN mod-
els is composed of I4U corpora and Multilingual LibriSpeech
(MLS) datasets [15].

4.2.2. Front-end

The x-vector extractor used in the SRE20 CTS challenge
is based on wide version of the ResNet-34, that employs a
modified version of Squeeze-and-Excitation (SE). The extrac-
tor was trained on LIA Training corpora, cut into 4-second
chunks and augmented with noise, as described in [1] and



available as a part of the Kaldi-recipe. The speaker embed-
dings are 256-dimensional and the loss is the angular additive
margin with scale equal to 30 and margin equal to 0.2. The
size of the feature maps are 256, 256, 512 and 512 for the 4
ResNet blocks. The SE layers are added to the first 2 ResNet
blocks. We use stochastic gradient descent with momentum
equal to 0.9, a weight decay equal to 2.10−4 and initial learn-
ing rate equal to 0.2. The batch size was set to 128, however,
training on 4 GPUs in parallel. The implementation is based
on PyTorch and the model traning takes about 4 days.

4.2.3. Back-end

The back-end of the single system is based on cosine similar-
ity measurement. We obtained on the CTS progress set : EER
of 2.83%, minDCF of 0.129 and actDCF of 0.126.

4.3. Loquendo and Politecnico di Torino

4.3.1. Additional Training Corpora

Besides the common I4U corpora we also used the follow-
ing datasets for training the DNN embedding models and the
related classifiers:

• Appen Conversational Telephonic Corpora: 1828
speakers - languages: Bulgarian, Dutch, Hebrew, Croa-
tian, Italian, Portuguese, Romanian, Russian, Turkish

• CN-Celeb: 352 speakers - language: Chinese Mandarin

• Fisher Spanish: 109 speakers – language: Spanish

• Multi-Language Conversational Telephone Speech
2011: 68 speakers - languages: American English,
Arabic, Czech, Bengali, Dari, Hindi, Persian, Pashto,
Slovak, Spanish, South-Asian English, Tamil, Turkish,
Urdu

• Rusten:121 speakers - language: Russian

4.3.2. Front-end: DNN embedding systems

For the SRE20 CTS challenge, we leveragred large DNN em-
beddings with more than 20 million parameters to achieve the
best possible accuracy. We used PyTorch and we trained
eleven DNN embeddings related to the ECAPA TDNN,
NEC 43-LAYERS RESNET, JHU MAGNETO 34-LAYERS
RESNET, and FTDNN RESNET families, introducing varia-
tion in terms of the layers size, the training hyperparameters,
and the AMSoftmax loss margin. Table 4 shows the four stan-
dalone DNN embeddings, whose scores have been provided
to the I4U consortium for the final fusion.

Moreover, Table 5 includes the additional seven DNN em-
beddings systems that have been used in the embedding fu-
sion systems, described in the next section.

Table 4. Main Loquendo DNN embedding systems

DNN model DNN type Size (millions)

LoqDNN6 JHU Magneto 21.1
LoqDNN9 FTDNN RESNET 23.3

LoqDNN12 FTDNN RESNET 54.7
LoqDNN18 JHU Magneto 28.4

Table 5. Additional DNNs used in embedding fusion systems

DNN model DNN type Size(millions)

LoqDNN1 JHU Magneto 19.3
LoqDNN2 ECAPA TDNN 23.3
LoqDNN3 NEC 43-RESNET 24.1
LoqDNN4 JHU Magneto 19.3
LoqDNN5 JHU Magneto 19.8
LoqDNN7 NEC 53-RESNET 32.5
LoqDNN8 FTDNN RESNET 23.3

4.3.3. Back-end

The embeddings related to the standalone Loquendo DNNs
were transformed in sequence by whitening, LDA projection
that reduces their dimensions to 200 and length normaliza-
tion. The LDA for the Loquendo embedding fusion systems
has been computed on all the speakers of the training set used
by Loquendo.

The classifier that has been used for obtaining the scores is
the neural pairwise support vector machine (NeuralPSVM).
The classifier takes inspiration from a work carried out by
people working in the LEAP lab of the Indian Institute of
Science, Bengaluru [16], [17]. The main idea is to perform
a neural refinement to pre-trained LDA, whitening, WCCN,
and PSVM [18], [19] scoring matrices. Starting from the ini-
tial model, gradient descent iterations are performed by using
a smoothed version of NIST DCF as an objective loss func-
tion, with two working points: Ptarget = 1% and Ptarget =
0.5%.

Based on the best practices for discriminative PSVM
training, impostor pairs were selected among similar speak-
ers. A similar-speaker score matrix was computed offline by
using an available accurate text-independent speaker recog-
nition model. The ratio of same-speaker / different-speaker
pairs for training was set 16 / 240: this means that, for a
given speaker, 16 pairs of utterances of the target speaker
are randomly selected and included in the training list, along
with 240 pairs of utterances of the selected speaker cou-
pled with randomly selected utterances of the 240 most
similar speakers. The batch size was set to a high value
(40*4096–68*4096) to have enough impostor pairs for a
reliable estimation of the cost function.

To improve the accuracy, the duration information is
added to the embeddings used for the training. The Neu-



ralPSVM classifier includes three additional duration factors
related to the sum, the difference, and the minimum number
of frames used for extracting the embeddings to compare.
The weights of the duration factors are automatically learned
by the neural refinement.

While the standard PSVM is trained on a subset (˜8000)
of speakers across the available training corpora the Neu-
ralPSVM classifier is trained on the full training sets includ-
ing ˜14.7 thousand speakers and ˜1.8 million utterances, in-
cluding the original and augmented segments. For the multi-
site embedding fusion, we exploited the standard PSVM
classifier trained on the subset of corpora used for the LDA.

All our systems but one do not include any score nor-
malization. Only the Emb-fus-1 system exploits the “Cal-
Norm” approach, which computes cohort-based statistics on
the scores following the approach defined by the adaptive AS-
Norm [20]. In this case, the mean and the impostor stan-
dard deviation values are weighted with predefined coeffi-
cients and subtracted from the raw scores as compensation
factors.

Table 6 summarizes the LDA, embedding classifier, and
score normalization used for the different systems.

Table 6. Scored systems information
System LDA size Classifier Normalization

LoqDNN6 200 NeuralPSVM none
LoqDNN9 200 NeuralPSVM none
LoqDNN12 200 NeuralPSVM none
LoqDNN18 200 NeuralPSVM none
Emb-fus-1 400 NeuralPSVM cal-norm
Emb-fus-2 450 NeuralPSVM none
Emb-fus-3 450 PSVM none

4.3.4. Progress Set Results

Table 7 summarizes the results of the seven systems provided
to I4U consortium on the official SRE20 CTS progress set.
The scores of the systems do not include any calibration step
for transforming the scores into LLRs at this point.

Table 7. Performance on the SRE 2020 CTS Progress Set

System EER % MinDCF

LoqDNN6 3.18% 0.117
LoqDNN9 3.06% 0.099

LoqDNN12 2.94% 0.096
LoqDNN18 3.00% 0.108
Emb-fus-1 3.30% 0.092
Emb-fus-2 3.31% 0.109
Emb-fus-3 3.66% 0.112

4.3.5. Computational And Memory Requirements

We used proprietary software for processing the audio files,
computing the VAD, and saving LogMel Bands STC infor-
mation on feature files, excluding the non-speech audio sig-
nal portions. On an Intel Core i5-6600, 3.3 GHz server, the
program that creates the feature files is ˜200 times faster than
real-time and requires less than ˜15 MB of memory for com-
puting the VAD and performing the feature extraction.

The feature files related to the audio segments to ana-
lyze are then processed with a python script invoking Py-
Torch for computing the DNN embeddings. We used a
server including the Quadro P6000 NVIDIA GPU (having
Intel(R) Xeon(R) Gold 625 as CPU) and the embedding
extraction procedure exploits GPU computation. Table 8
includes the figures related to the real-time factor (RTF)
between the processed speech duration and the actual com-
putation time needed by the inference tool. Moreover, Table
8 reports also the GPU memory as reported by the API
“nvidia smi.nvmlDeviceGetMemoryInfo” for all the eleven
DNNs prepared by our site for the NIST SRE20 CTS chal-
lenge.

Table 8. DNN Embeddings Memory and RTFs

DNN model GPU memory RTF

LoqDNN1 19.31 GB 625x
LoqDNN2 4.38 GB 2011x
LoqDNN3 5.25 GB 1318x
LoqDNN4 18.72 GB 700x
LoqDNN5 19.65 GB 647x
LoqDNN6 20.13 GB 608x
LoqDNN7 6.70 GB 990x
LoqDNN8 5.54 GB 1274x
LoqDNN9 5.54 GB 1271x

LoqDNN12 20.2 GB 565x
LoqDNN18 6.25 GB 789x

Finally, the scoring for this evaluation has been performed
by using a non-optimized Python environment. The elapsed
time for obtaining the raw PSVM scores for the ˜2.6 M trials
is around a couple of minutes. Obtaining the Cal-Norm scores
requires about less than 3 hours. It is worth noting, however,
that this implementation has been used just for these experi-
ments. It has been designed to favor flexibility over computa-
tional efficiency.

4.4. NEC

4.4.1. Front-end

We used a variant of x-vector extractors which had a 43
TDNN layers with residual connections. This is exactly same
as the one shown in the work [4]. Here, 2-head attentive
statistics pooling was used in the same way as in the paper.



Additive margin softmax loss was used for optimization.
512-dimension bottleneck features from the first segment-
level layer was used as speaker embeddings.

4.4.2. Back-end

Heavy-tailed PLDA (HT-PLDA) was used as the back-end in
our systems. NIST SRE 04-12 datasets were used for produc-
ing out-of-domain PLDA. On the other hand, we also trained
in-domain PLDA using SRE16 and SRE18 set. X-vectors
for in-domain PLDA training were centerized using SRE16,
SRE18 and SRE19 set. Then we applied linear interpolation
between the out-of-domain PLDA and the in-domain PLDA.
Weights for both PLDAs were 0.5.

4.5. NUS

4.5.1. Front-end

We perform data augmentation on the training dataset, which
comprise of previous editions of SRE datasets 2004-2016,
Mixer6, Switchboard, Fisher and VoxCeleb1-2 datasets. The
number of training utterances are doubled by adding noisy
and reverberated versions of the clean utterances. For this
purpose, music, speech and babble noise segments extracted
from the MUSAN database is used [14]. The MFCC fea-
tures of the augmented training set are extracted for training
a TDNN model based on the architecture described in [1] to
extract 512-dimensional embeddings.

4.5.2. Back-end

The back-end of the system considers a 150-dimensional
LDA to reduce the dimension of the x-vectors followed by
PLDA classifier to compute the likelihood scores. It is noted
that the PLDA model is first adapted with SRE 2018 eval set
before scoring, which we found to give a better result than
that without domain adaptation. Additionally, score normal-
ization is applied with adaptive s-norm technique (30% top
scores) considering the SRE 2018 eval set.

4.6. THUEE

4.6.1. Front-end

Training data we used includes SRE04-10, MIXER6, Switch-
board (SWBD), Voxceleb 1&2 and Fisher datasets. These
datasets (i.e., SRE, SWBD, Voxceleb) are augmented by
different folds for different systems after convolving with far-
field Room Impulse Responses (RIRs), or by adding noise
from the MUSAN corpus. MFCC as acoustic feature is ex-
tracted with a 25 ms window size and a time shift of 10 ms.
The operations of data augmentation and feature extraction
are dependent on Kaldi x-vector recipe. We used the ex-
tended factorized TDNN (EF-TDNN) as baseline model and

did some extensions on it called EF-TDNN LSTMP and EF-
TDNN SE respectively. EF-TDNN LSTMP, compared with
basic EF-TDNN, replace the 19th layer with long short-term
memory with recurrent project layer (LSTMP) [21]. LSTMP
is combination of two improved methods. One is to introduce
a recurrent projection layer between the LSTM layer and the
output layer. The other is to introduce another non-recurrent
projection layer to increase the projection layer size without
adding more recurrent connections. In our LSTMP layer, it
has 1024-dimensional cell, 512 recurrent and non-recurrent
projection dimensions. Besides, considering the channel
attention mechanism from the squeeze-and-excitation (SE)
block [22] and its previous performance on different fields,
EF-TDNN SE mainly changes the structure of F-TDNN layer
by adding SE layer with reduction ratio as 16 before the last
convolutional layer.

4.6.2. Back-end

After the embeddings are extracted, they are then trans-
formed to 300 dimension using LDA. Then, embeddings are
projected into unit sphere. At last, adapted PLDA with no di-
mension reduction is applied. As for the data for LDA/PLDA
adaptation, it is achieved by filtering more adaptive datasets
according to the results on the leader board of CTS chanl-
lenge.

4.7. TJU

4.7.1. Front-end

We use the SpeechBrain [23] toolkit to realize a standard
ECAPA-TDNN system. After removing erroneous labels,
7,447 speakers are finally selected from SRE datasets 2004-
2016 with 120,443 utterances. The network inputs 80-
dimensional log fbank features and ouputs 192-dimensional
speaker embeddings. Time domain SpecAugmentation,
adding noise, adding reverberation, and adding noise &
reverberation at the same time are implemented for data
augmentation. Speeches are cropped and reunited after Voice
Activity Detection (VAD). The whole process of features ex-
traction are performed with GPUs using on-the-fly approach.
Sentence-level normalization is used for input features. Ad-
ditive Angular Margin Softmax and CyclicLRScheduler are
employed to train the system.

4.7.2. Back-end

The back-end of the single system is based on cosine similar-
ity measurement, with EER of 4.01%, MinDCF of 0.247, and
ActDCF of 0.512 in the CTS eval set.



4.8. UEF

4.8.1. Front-end

Our speaker embedding extractor is based on the D-TDNN
described in section 3.1.2. Our training data is composed
of VoxCeleb1 training set, VoxCeleb2, LibriSpeech, Switch-
board, MIXER-6, and SRE datasets (2004-2010). After re-
moving very short utterances (less than 4 s) and speakers with
too few number of utterances (less than 8), the total number
of speakers are 12860. We perform data augmentation using
room impulse response (RIR) [13] and MUSAN dataset [14],
followed by random sampling a subset which is two times
larger than the original data. We combined the subset and the
original set as the training data for D-TDNN. Adam [24] is
adopted as the optimizer. Speaker embeddings are extracted
from the first fully-connected layer after pooling.

4.8.2. Back-end

The extracted speaker embeddings are mean subtracted and
length normalized, before being transformed to 200 dimen-
sion using LDA. We used SRE2004-2010, Switchboard and
MIXER-6 to train PLDA, and SRE20 development set for
adapting it [25]. Log-likelihood scores provided by this sub-
system are returned by the adapted PLDA.

4.9. Vivolab and Agnitio

4.9.1. Front-end

Vivolab embedding extractor is built based on the Extended-
TDNN described in section 3.1.1. The training corpus con-
sists of the traditional MIXER6 corpora (SRE04-06, SRE08
and SRE10), complemented with the data from SRE18 and
VoxCeleb 1. Agnitio embedding extractor is also based on
Extended-TDNN neural network trained with the same data
as Loquendo and Politecnico di Torino do. As input features,
Agnitio selected wav2vec [26].

4.9.2. Back-end

Vivolab backend is based on the state-of-the-art LDA-PLDA
pipeline. For this purpose we define two subsets of data to
take into consideration: On the one hand we include both
MIXER6 and VoxCeleb1 data as a large out-of-domain sub-
set. On the other hand the in-domain subsets consists of ex-
cerpts from SRE16, SRE18eval and SRE19. Due to the differ-
ent nature between both subsets we first apply CORAL [27],
weighting both domains with a factor of 0.5. The adapted em-
bedings now undergo centering and LDA-based whitening (a
reduction of dimension up to 300). Final scores take into ac-
count two different models, the simplified PLDA (SPLDA) as
well as a joint PLDA of two factors [28], with a inter-speaker
subspace dimension of 100. These models consider the same
training corpus as CORAL and the LDA. Agnitio backend

consists on LDA-PSVM trained with the same data as Lo-
quendo and Politecnico di Torino do.

5. FUSION AND CALIBRATION

5.1. Embedding Fusion

To enhance the accuracy, we also exploited embedding fu-
sion approaches by stacking x-vectors produced by different
systems. This allows exploiting the orthogonality of different
systems and obtaining better accuracy results. It is worth re-
marking that such an approach is computationally expensive,
and it makes sense mainly on challenges and evaluations to
showcase technology.

Currently, we provided scores to the I4U consortium re-
lated to three embedding fusions. Two of them were based
on the fusion of Loquendo DNN embeddings systems. The
remaining DNN embedding fusion involved using embed-
dings produced by multiple I4U sites. Table 9 summarizes
the embedding fusion systems used in the challenge and their
stacked size.

Similar to the embeddings related to the standalone Lo-
quendo DNNs, fused embedding were transformed in se-
quence by whitening, LDA projection that reduces their
dimensions (to 400 or 450) and length normalization. More-
over, the LDA for the Loquendo embedding fusion systems
has been computed on all the speakers of the training set used
by Loquendo, while for the multi-site embedding fusion the
LDA has been computed on a common subset of corpora
including NIST SRE04-10, Mixer6, SRE16, SRE18, and
SRE19. Tables 6 and 7 compared the fused embeddings with
that of standalone embeddings.

Table 9. Embedding fusion systems
Model Name DNN models Stacked size

Emb-fus-1 LoqDNN1-2-3-5 2048
Emb-fus-2 LoqDNN4-6-7-8-9 2304
Emb-fus-3 I2R,LOQDNN6-9, NEC,TJU,UEF 3072

5.2. Score Fusion and Calibration

For score fusion, a Python implementation1 of the BOSARIS
toolkit [29] was used for logistic regression yielding log-
likelihood ratio (LLR) scores. In preliminary studies, we (i)
investigated and extended quality estimates [30, 31], and (ii)
observed that some systems are causing worse performance
if included (especially on the progress set).

We found log-duration to be helpful despite data shifts. In
Miranti’s method [31], log-ratios of both audio segments’ du-
rations are investigated. We generalise and let the regression
find exponents for each duration value. Of n systems, scores

1https://gitlab.eurecom.fr/nautsch/pybosaris

https://gitlab.eurecom.fr/nautsch/pybosaris


Si are fused to S′ using n+3 weights w0, wi, wr, wp and de-
pending durations of reference (summed if multiple files) and
probe audios dr, dp (also easier to implement):

S′ = w0 +
∑

i∈1..n
wi Si + wr log(dr) + wp log(dp). (1)

When fusing all above described subsystems and embed-
dings fusion systems, we investigated the individual LLR
contribution of each subsystem (wi Si). Looking at the ab-
solute value of a system’s highest/lowest contribution, we
observed that some contributed small offsets of ≤ 1 to any
LLR; systems of weak contribution. Jackknifing showed that
some remained useful nonetheless. Our fusion comprised
twelve subsystems and the two duration sets.2

Table 10. Initial analysis: LLR contribution potentials.

Subsystem minwi Si maxwi Si Used for fusion

Emd-fus-1 -6.3 2.6 x
Emb-fus-2 -9.0 5.7 x
Emb-fus-3 -6.8 2.6 x

I2R -0.2 0.1
I2Rr1 -2.6 1.1
I2Rr2 -0.7 1.7 x
I2Rr3 -0.7 1.9
I2Rr4 -8.1 3.5 x

LoqDNN6 -0.9 1.7 x
LoqDNN9 -0.1 0.1

LoqDNN12 -3.9 2.2 x
LoqDNN18 -0.9 1.6

LIA -0.8 0.4 x
NEC -4.8 2.5 x

THUEE -2.6 1.3 x
UEF -0.4 0.7 x

VIVO -1.8 0.5 x

Table 10 shows the contribution to fusion of the above
subsystems in a preliminary assessment fusion. Neither are
durations included, nor is the decision for inclusion in the fi-
nal fusion set-up made solely on this information. Yet, for
this composition, one can identify the embedding fusions to
be the draught horses here. While individual systems can
perform good, their contribution here might be little when
they are many alike systems in that particular composition
(weights depend on the composition of systems to be fused);
vice versa, systems of low individual performance might ap-
pear better here for they behave differently. Moreover, some
systems of little contribution have critical impact on the small
yet remaining performance gains on progress set.

2Since the challenge rules were that systems of lower actual DCF will
become the new primary system, we added a −2 offset to all our scores, so
we could update potentially later with lower minDCF systems.

The contribution to the I4U fusion is shown in Table 11.
Weights are shown for curtosy reasons; some are negative—
some systems became correctors to an otherwise overconfi-
dent fusion outcome (if they would not have been a part of
the fusion). Log-durations are demonstrated for their need
as a correction measure; as a quality estimate. Among the
subsystems, the ranges of LLR contribution changed slightly.
In comparison to the subsystems’ contribution to the fusion
LLR, log-duration appears not considerable to yield an LLR
by itself; yet, it re-adjusts for too high LLR estimates. There
are two impacts of weights: proportion a subsystem matters
within the fusion composition while also making its scores fit
to the LLR scale of composed systems.

Table 11. Fusion: LLR contributions (w0 = 12.5).
Subsystem minwi Si maxwi Si weight ×100

Emd-fus-1 -6.1 2.5 27.6
Emb-fus-2 -8.3 5.2 50.8
Emb-fus-3 -6.8 2.6 55.5

I2Rr2 -0.7 1.8 -3.5
I2Rr4 -7.2 3.1 13.5

LoqDNN6 -0.7 1.5 -13.1
LoqDNN12 -3.6 1.0 25.1

LIA -0.9 0.4 0.5
NEC -4.1 2.2 2.7

THUEE -2.9 1.5 1.0
UEF -0.5 0.9 -0.6

VIVO -0.2 0.0 -0.8

log(dr) -4.0 -3.3 -39.8
log(dp) -4.7 -3.2 -52.7

6. RESULTS ON DEVELOPMENT AND PROGRESS
SETS

Performance of the submissions on I4U Development set (as
in Table 1) and Progress (sre20 progress) Sets are shown in
Table 12.

Table 12. Performance of the primary fusion on I4U Devel-
opment and SRE’20 Evaluation Sets.

Equalized EER (%) Min Cprimary Act Cprimary

I4U Dev 2.18 0.038 0.043
Progress 2.53 0.077 0.094
Test 2.91 0.066 0.070



7. COMPUTATION AND MEMORY REQUIREMENT

The GPU and CPU time for individual sub-systems to pro-
cess a single trial is shown in Table 13. Peak memory usage
required to process a pair of enrollment and test recordings
was approximately 300 to 700 MB.

Table 13. CPU and GPU execution time used to process a
single trial for each sub-system/sub-fusion in term of real-
time factor (RT).

Sub-system RT (CPU) RT (GPU)

Emd-fus-1 - 0.0044
Emd-fus-2 - 0.0056
Emd-fus-3 3.60 0.0094
I2R (r2, r4) 0.281 -
LoqDNN6 - 0.0015
LoqDNN12 - 0.0018

LIA - 0.0017
NUS - 0.0020
NEC 0.417 -

THUEE - -
UEF 2.902 0.0012

VIVO - -

8. CONCLUSION

The I4U submissions were based on the score fusion of mul-
tiple sub-systems. Scores from individual sub-system/sub-
fusion were first calibrated followed by simple linear trans-
formation fusion. Another highlight to I4U submission is em-
bedding fusion, where sub-system embeddings are concate-
nated and used as input to the classifier.

9. ACKNOWLEDGEMENTS

This work was partially funded by the ANR/JST VoicePer-
sonae project (grant No. JPMJCR18A6).

10. REFERENCES

[1] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and
S. Khudanpur, “X-vectors: Robust DNN embeddings
for speaker recognition,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP) 2018, 2018, pp. 5329–5333.
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