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ABSTRACT

This paper presents a description of STC Ltd. systems sub-
mitted to the NIST 2021 Speaker Recognition Evaluation
(SRE) conversational telephone speech (CTS) challenge.
These systems include different subsystems based on using
different neural networks as speaker embedding extractors.
During the NIST CTS Challenge we focused on the training
of the state-of-the-art deep speaker embeddings extractors
like ResNets and ECAPA networks. We used additive angular
margin based loss functions. Additionally, inspired by the re-
cent success of the wav2vec 2.0 features in automatic speech
recognition we explored the effectiveness of this approach
for the speaker verification. According to our observation the
fine-tuning of the pretrained large wav2vec 2.0 model pro-
vides our best performing system for the evaluation progress
set. The final results for submitted systems were obtained
by different configurations of subsystems fusion on the score
level followed by score calibration.

Index Terms— Speaker recognition, CTS challenge,
Resnet, ECAPA, DTDNN, wav2vec 2.0

1. INTRODUCTION

Today’s state-of-the-art [1, 2, 3, 4, 5] speaker recognition sys-
tems are based on very deep convolutional neural networks
(ResNets, ECAPAs, Extended TDNNs) which take as input
Log Mel-filter bank features and trained on large datasets us-
ing additive angular margin loss functions and different opti-
mization strategies. The simple cosine or PLDA scoring are
usually used as an extractors back-end. Adaptive s-norm is
applied to improve systems performance. In our study we de-
cide to follow this principles while developing our systems
for the NIST SRE CTS challenge.

The special attention was paid for developing alternative
Neural Back-End (NBE) for the deep speaker embeddings ex-

tractors.
Inspired by the success of wav2vec 2.0 in speech recog-

nition tasks [6, 7] in our work we performed new study of
wav2vec 2.0 model fine-tuning for speaker recognition tasks.
It should be noted that wav2vec 2.0 models are powerful
transformer based models which use raw speech signals as its
input and incorporate multi-head attention mechanism on the
deep layers to process information.

This paper presents the detailed description of the sys-
tems submitted by STC LTD to NIST CTS 2021 Challenge
and its performance estimations on different benchmarks and
progress set of the challenge.

2. TRAIN DATASETS

we used a wide variety of different datasets containing tele-
phone and microphone data from private datasets and from
those available online:

• Switchboard2 Phases 1, 2 and 3;

• Switchboard Cellular;

• Mixer 6 Speech;

• NIST SREs 2004 - 2010;

• NIST SRE 2018 (eval set);

• concatenated VoxCeleb 1 and 2;

• RusTelecom v2;

• RusIVR corpus.

RusTelecom v2 is an extended versions of private Russian
corpus of telephone speech, collected by call-centers in Rus-
sia. RusIVR is a private Russian corpus with telephone and
media data, collected in various scenarios and recorded by



different types of devices (telephone, headset, far-field micro-
phone, etc). All files are sampled at 8 kHz.

In order to increase the amount and diversity of the train-
ing data, we used Kaldi augmentation recipe (reverberation,
babble, music and noise) with the freely available MUSAN
and simulated Room Impulse Response (RIR) datasets.

In total, this training dataset contains 1,679,541 record-
ings from 33,466 speakers.

3. SYSTEMS

This section contains the description of all single systems
used for final submissions.

3.1. Front-End processing

In our study we consider popular Log Mel-filter bank energies
for ResNet and ECAPA like architectures and raw speech sig-
nals for the wav2vec 2.0 based systems. Brief description of
these front-ends goes as follows:

8kHz MFB. We use Log Mel-filter bank (MFB) energies
extracted from the raw 8kHz signals using the following set-
tings:

• frame-length - 25 ms

• frame-shift - 10 ms

• low frequency - 20 Hz

• high frequency - 3700 Hz

• number of mel bins - 64

After the features were extracted Mean Normalization (MN)
over a 3-second sliding window was applied. The U-net-
based VAD was used after the MN-normalization procedure
to filter out non-speech segments.

Raw audio signal processing. For our wav2vec based
extractors we used raw 16 kHz audio. 8kHz utterances were
upsampled to 16kHz by sox utility. Additionally, on-line aug-
mentation scheme was used during the training process for
raw audio samples using the following probabilities of noise
to be used:

• MUSAN additive noise with p = 0.25;

• RIR convolution with p = 0.25;

• Frequency masking with p = 0.25;

• Time masking with p = 0.25;

• Clipping Distortion with p = 0.25.

Here p is a probability of applying augmentation type for the
sample in the training batch. All considered augmentations
were applied in sequence.

3.2. Speaker embedding extractors

During all stages of training and tuning processes AAM-
Softmax loss was used with parameters m and s set to 0.35
and 32 respectively.

For training we used One Cycle learning rate scheduler
with SGD optimizer. In some cases last tuning steps were
performed using Adam and small constant learning rate value.

ECAPA-TDNN This model is based on ECAPA-TDNN
[8] architecture with the following parameters: the number of
SE-Res2Net Blocks is set to 4 with dilation values 2,3,4,5 to
blocks; the number of filters in the convolutional frame layers
C is set to 1024 equal to the number of filters in the bottle-
neck of the SE-Res2Net Block; ASP is used; embedding layer
size is set to 512. Stem block changed to stack of 4 Conv2D,
BatchNorm2D, ReLU layers with 3 kernel size and 32 filters
and last Conv1D with 1024 filters. Model was trained on the
8kHz MFB data in several stages with increasing crop size,
loss margin and decreasing learning rate. At the final stage
we used long segments (10, 12 seconds) for fine-tuning pro-
cedure.

ResNet101. This model is based on ResNet101 architec-
ture with the following modifications:

• Maxout activation function on the embedding layer;

• stride = 1 in the first BotleneckBlock;

• simple Conv2D stem block.

Model training and tuning procedures were the same as
described above for ECAPA-TDNN.

ResNet146. This model uses standard ResNet146 archi-
tecture. Similar to ResNet101 the model was firstly trained
using MFB features for short speech segments (5 seconds)
and then tuned iteratively for several epochs using longer
speech segments (10, 12 seconds).

DTDNN. This model is our implementation of Densely
Connected Time Delay Neural Network [9]. To train the ex-
tractor we used recommended settings from the original pa-
per. The model was pretrained on 5 seconds speech chunk du-
ration and then fine-tuned using 12 seconds speech segments.

Wav2vec-TDNN. The main scheme of wav2vec 2.0 based
speaker embeddings extractor is represented on Figure 1. As
an effective wav2vec 2.0 back-end we applied two TDNN lay-
ers ( the 1st with ReLU activation), statistic pooling layer to
pool time series to single vector, maxout linear layer [10, 3] to
get speaker embedding. We used AAM-Softmax based linear
classification layer to fine-tune the extractor. In principle, one
can pass output of the wav2vec directly to the statistics pool-
ing layer. Our intuition here is as follows. We realised that un-
supervised wav2vec model pretraining leads to good speech
information generalization on the top layers of the autoregres-
sive model. The role of TDNN layers is to prefilter speaker
specific information and to ”prepare” wav2vec output for sta-
tistical pooling. According to our observations this approach



Fig. 1. Wav2vec 2.0 based speaker embeddings extractor

let us achieve better results than direct statistical pooling of
the wav2vec outputs. The TDNN blocks utilise context 1 of
the input features and have 2048 dimension output. The ob-
tained final speaker embedding size was 512. Additional note
is that wav2vec part of the extractor could be freezed while
tuning for downstream speaker recognition task. We observed
that in this scenario the results can also be very good, but fine-
tuning the whole extractors provide additional performance
gains for speaker recognition systems.

Our wav2vec-TDNN models are based on wav2vec 2.0
large architecture. We used large multi-lingual wav2vec 2.0
model XLSR 53 provided by facebook [11] on fairseq cite
as a starting point for the model fine-tuning on 2 dataset.

There are two types of wav2vec-TDNN models in this
study. The first one wav2vec-TDNN(clean) was trained on
clean version of the dataset 2 . The second one wav2vec-
TDNN(aug) was tuned using online augmentation scheme de-
scribed in Section 3.

3.3. Back-Ends

3.3.1. Cosine similarity

We used Cosine similarity to distinguish speaker embeddings:

S(x1,x2) =
x1

Tx2

x1x2
, (1)

where (x1,x2) are speaker embedding vectors.

3.3.2. NeuralNet Back-End

We investigated neural network based back-end (NBE) as an
alternative to the conventional cosine similarity scoring. NBE
is a simple feedforward neural network that takes two embed-
dings (test and enroll ones) as an input and outputs a probabil-
ity that these embeddings correspond to the same speaker. To
train NBE, we constructed positive (matching speakers) and
negative (non-matching speakers) training examples. A pos-
itive example is just a pair of embeddings corresponding to
different utterances of the same speaker. On the other hand,
a negative example is a pair of embeddings corresponding to
different speakers while having a high cosine similarity score.
Due to the nature of the DCF metric, we balanced training ex-
amples in a ratio of 8 negative per 1 positive. Performance of
NBE in terms of EER and DCF was competitive to the cosine
similarity. Moreover, a combination of NBE and cosine sim-
ilarity scores provided significant improvement over a single
back-end.

We also utilized NBE to fuse several types of speaker
embeddings. For that, we designed a single neural network
with four similar branches corresponding to four types of
speaker embeddings described in subsection 3.2, namely
ECAPA-TDNN, ResNet101, ResNet146, and DTDNN. Each
branch takes a pair of embeddings as input, and then outputs
of these branches are fed to a combining layer followed by an
output layer. Such NBE achieved much lower EER and DCF,
comparing to a simple fusion of cosine similarity scores.

3.3.3. Class posteriors logit embeddings

During our investigation we observed that the extractors clas-
sification layer outputs (namely class posteriors logit embed-
dings, or cl-embeddings) could be more informative than con-
ventional pre-last layer embeddings. We realised that top lin-
ear layer obtained in closed classification task during discrim-
inative training could contain useful information for open task
speaker recognition. We explored some naive ideas of using
this information by doing speaker verification on the classifi-
cation layer output with cosine similarity metric scoring.

3.3.4. Score normalization and calibration

For all systems adaptive scoring normalization technique
(adaptive s-norm) from [12] was used. Here the normalized
score for a pair (x1,x2) can be estimated as follows:

Ŝ(x1,x2) =
S(x1,x2)− µ1

σ1
+

S(x1,x2)− µ2

σ2
, (2)

where the mean µ1 and standard deviation σ1 are calcu-
lated by matching x1 against impostor cohort and similarly

https://github.com/pytorch/fairseq/tree/main/examples/wav2vec


Table 1. Results of cl-embeddings, scores normalization and fusion of the different systems prepared for the NIST SRE 21
CTS challenge. The results obtained for NIST SRE 18 dev set, NIST SRE 19 and NIST SRE 16 eval sets.

System Dataset cl-emb s-norm EER DCF(0.05) DCF(0.01)

ResNet101
nist2018 dev - - 4.00 0.157 0.234
nist2016 eval - - 6.84 0.408 0.597
nist2019 eval - - 2.78 0.162 0.268

ECAPA-TDNN
nist2018 dev - - 4.75 0.186 0.27
nist2016 eval - - 9.61 0.564 0.832
nist2019 eval - - 3.33 0.196 0.329

ResNet101
nist2018 dev ✓ - 3.66 0.14 0.206
nist2016 eval ✓ - 5.96 0.347 0.52
nist2019 eval ✓ - 2.50 0.145 0.248

ECAPA-TDNN
nist2018 dev ✓ - 4.63 0.173 0.256
nist2016 eval ✓ - 8.72 0.525 0.8
nist2019 eval ✓ - 3.13 0.18 0.305

ResNet101
nist2018 dev - ✓ 3.44 0.13 0.205
nist2016 eval - ✓ 5.64 0.274 0.409
nist2019 eval - ✓ 2.52 0.145 0.24

ECAPA-TDNN
nist2018 dev - ✓ 4.28 0.167 0.246
nist2016 eval - ✓ 8.88 0.385 0.533
nist2019 eval - ✓ 3.07 0.177 0.291

ResNet101
nist2018 dev ✓ ✓ 3.42 0.128 0.194
nist2016 eval ✓ ✓ 5.01 0.237 0.357
nist2019 eval ✓ ✓ 2.39 0.134 0.228

ECAPA-TDNN
nist2018 dev ✓ ✓ 4.20 0.154 0.228
nist2016 eval ✓ ✓ 8.59 0.337 0.465
nist2019 eval ✓ ✓ 2.97 0.165 0.269

ResNet101 + ECAPA-TDNN
nist2018 dev ✓ ✓ 3.20 0.115 0.168
nist2016 eval ✓ ✓ 4.87 0.221 0.328
nist2019 eval ✓ ✓ 2.12 0.122 0.214

DTDNN
nist2018 dev ✓ ✓ 4.37 0.1626 0.2243
nist2016 eval ✓ ✓ 7.65 0.4158 0.595
nist2019 eval ✓ ✓ 3.33 0.196 0.322

ResNet146
nist2018 dev ✓ ✓ 3.60 0.141 0.207
nist2016 eval ✓ ✓ 5.41 0.244 0.36
nist2019 eval ✓ ✓ 2.78 0.154 0.253

wav2vec-TDNN(clean)
nist2018 dev ✓ ✓ 3.22 0.097 0.148
nist2016 eval ✓ ✓ 3.87 0.193 0.287
nist2019 eval ✓ ✓ 1.76 0.102 0.187

wav2vec-TDNN(aug)
nist2018 dev ✓ ✓ 3.07 0.183 0.137
nist2016 eval ✓ ✓ 4.18 0.258 0.206
nist2019 eval ✓ ✓ 2.34 0.19 0.142



Table 2. Results of the prepared for the NIST SRE 21 CTS challenge obtained for NIST SRE 21 progress set

№ System name Back-End EER DCF(0.05) actDCF(0.05)
1 ECAPA-TDNN Cosine 2.91 0.109 -
2 ResNet101 Cosine 2.75 0.097 -
3 ECAPA-TDNN + ResNet101 Cosine 2.59 0.091 -
4 ECAPA-TDNN + ResNet101 Cosine on cl-embeddings 2.71 0.085 -
5 ECAPA-TDNN+ResNet101+ResNet146+DTDNN NBE 2.45 0.081 -
6 Fusion of 4 and 5 cosine & NBE 2.48 0.074 0.079
7 wav2vec-TDNN (clean) Cosine on cl-embeddings 2.95 0.085 -
8 wav2vec-TDNN (aug) Cosine on cl-embeddings 2.25 0.08 -
9 Fusion of 4 + 7 + 8 Cosine on cl-embeddings 2.42 0.072 0.083

for µ2 and σ2. A set of the n best scoring impostors are se-
lected for each embedding pair when means and standard de-
viations are calculated.

CLLR loss function optimization was used to find scores
scaling and shift parameters for appropriate scores calibra-
tion.

4. FINAL SUBMITTED SYSTEMS

The results of all considered single systems are presented in
Table 1. One should note that using cl-embeddings and adap-
tive s-norm provide significant improvement. As the final
submission system we used score and embedding level fusion
of several single systems (see Table 2 for its performance re-
sults on the progress set). Systems 6 and 9 were calibrated
using pooled NIST SRE 2016 and 2019 eval set.
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