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ABSTRACT 

This document describes our system description for the 

SRE20 CTS Challenge. We developed several types of 

DNN embeddings with PLDA backend. Performance of our 

system on in the SRE20 progress set is as follows: the equal 

error rate (EER) 2.55%, Cmin=0.087 and Cact=0.101. 

 

1. INTRODUCTION 

 

The DAIC-JHU submission is the joint effort of the teams at 

Panasonic (Panasonic-DAIC) and Johns Hopkins 

CLSP(JHU-CLSP). Each team explored different x-vector 

extractors and PLDA backends with different combination 

of training sets. 

 

2. SYSTEM COMPONENT 

2.1 Acoustic Features and Voice Activity Detection 

 

The acoustic features were 64 log-Mel filter banks for all 

our systems. These features were short-time mean 

normalized with a 3 seconds window. Silence frames were 

removed using Kaldi energy VAD. The Kaldi energy VAD 

makes frame-level decisions, classifying a frame as speech 

or non-speech based on the average log-energy in each 

window. 

 

2.2 Audio Embeddings 

 

All the x-vector architectures follow the x-vector scheme [1, 

2]. In essence, the embedding network consists of an 

encoder that extracts frame-level discriminant embeddings, 

a pooling mechanism, and a classification head. In our case, 

we tried several encoder architectures and used either 

statistics pooling (mean+stddev) [1] or channel-wise 

attentive statistics pooling [3]. The network is trained to 

minimize the categorical cross-entropy loss of the predicted 

speaker posteriors. We used additive angular margin 

softmax loss [4] in all our networks. We describe the 

encoder architectures in the following paragraphs. 

 

2.2.1 Panasonic-DAIC system 

• SE-ResNeXt50 

SE-ResNeXt50[5] is a squeezing and excitation block 

applied to ResNeXt50, and ResNeXt50 is a branching of the 

input in each block of ResNet50 into several paths shown in 

Figure 1. Table 1 shows SE-ResNeXt50 topology. 

 

 
Figure 1: basic brock in ResNet50(left) and basic brock in 

ResNeXt50(right). 

 

Table 1: the architecture of SE-ResNeXt50 

 



2.2.2 JHU-CLSP system 

• ResNet34 

This encoder is based on the original ResNet34 architecture 

proposed in [6]. ResNet34 has an input stem layer followed 

by 16 2D convolutional residual blocks. This architecture 

downsamples the feature maps 3 times with a stride of 2 (8× 

total downsampling), at the same time as it multiplies the 

number of channels in the convolutions. 

The output of this network is a four-dimensional tensor 

(B, C, F/8, T/8), where B is batch-size, C is number of 

channels, F is the number of Mel filters and T is time. 

Channel and frequency dimensions are flattened to (B, C × 

F/8, T/8) before passing the features to the pooling layer [7]. 

 

• Transformer 

We also tried the Transformer Encoder architecture [8] as 

Encoder for x-vectors. We used an encoder with 8 self- 

attention blocks. The input stem uses a two 2D Conv layers 

that downsample time dimension ×4. We also implemented 

a local attention procedure that limits the self-attention 

receptive field to 6 time steps (25 msecs) in each layer. This 

is similar to the Longformer architecture [9]. 

 

• EfficientNet-b4 

EfficientNet architecture was proposed in [10] for images. 

This is a residual network that used 2D separable 

convolutions to reduce the number of multiplications of the 

network. The work in [10] proposes a base architecture, 

denoted as EfficientNetb0. Then larger networks 

EfficientNet-bn are obtained by scaling up number of 

channels and network depth in such way that EfficientNet-

bn is 2^n times more computationally expensive than b0. 

We found that b4 was needed to improve ResNet34. We 

also needed to remove the first two feature map 

downsamplings from the original EfficientNet architecture. 

 

• Res2Net50 

This encoder is based on the original ResNet50 architecture 

proposed in [6]. ResNet50 has an input stem layer followed 

by 16 Bottleneck residual blocks as the one in Figure 2(left). 

These blocks are based on 2D convolutions. This 

architecture downsamples the feature maps 3 times with a 

stride of 2 (8×total downsampling), at the same time that 

multiplies the number of channels in the convolutions. 

Res2Net, proposed in [7] replaces the standard bottleneck 

blocks by Res2Net blocks in Figure 2(right). Res2Net 

divides the channels in the bottleneck layer into several 

groups–this is known as the scale parameter. Each group 

(except the first one, which is just copied in the output) 

passes through a 3×3 convolution and is added to the input 

of the convolution of the next group. Hence, each group 

observed a different receptive field. In our networks, we set 

the scale to 4 or 8; and the number of channels in each 

group (width) was set to 26 for the first Res2Net block, 

following [7]. Each time the network downsamples the 

feature maps, we duplicate the width of the Res2Net groups. 

 

 

Figure 2: ResNet50 standard bottleneck blocks (left) and 

Res2Net50 bottleneck block (right) 

 

2.3 Back-end 

 

•  PLDA backend 

The pipeline for this back-end included LDA, centering, 

whitening, length normalization, and generative Gaussian 

SPLDA.  

At first, we train LDA and the Whitening step, and then, we 

apply length normalization. 

PLDA is trained on length normalized embeddings. 

 

• kNN-PLDA 

The idea of this back-end consists of training a back-end 

model adapted to each trial. The motivation is that we do not 

know the number of domains in our eval data and also, we 

do not know if all of those domains match any of the 

domains in our training and adaptation data. Thus, a PLDA 

mixture may not work since the eval data may not match 

any of the components of the mixture. We simplify the 

problem by assuming that enrollment and test segments 

belong to the same domain, as indicated in the eval plan. 

The method consists of training a back-end (including 

PCA/LDA/centering/whitening/PLDA) model using the k 

Nearest training speakers to the enrollment segments (1 or 

3) of the trial. The enrollment segments are also included in 

the back-end training. In this manner, even if the trial’s 

domain is not included in the training, the corresponding 

back-end can be trained using the closest speakers from 

multiple domains. We also think that this method can 

benefit from domain adaptation. The number of in-domain 

neighbors may be too small to train PLDA. Instead, we can 

train the back-end on a larger number of speaker neighbors 

k1 and adapt to a smallest (closest) number of speakers 

neighbors k2.   



 

 
 
The procedure is depicted in Figure 3. For each enrollment 

side, we use cosine scoring to find the k1 closest training 

speakers. Then, we pool the enrollment segments and all the 

recordings from those k1 speakers and we train a Basic 

backend (PCA/LDA/centering/whitening/LNorm), denoted 

as BE1. Then, we score again the enrollment model versus 

the training speakers, but this time using BE1 back-end, to 

find a refined set of in-domain speakers k2 < k1. Then, we 

use those speakers to adapt BE1’s centering and PLDA and 

produce BE2. In this manner, we train a back-end for each 

enrollment model, and use that back-end for all the trials 

that involve that model. 

This back-end does not require S-Norm. 

 

2.4 Training datasets 

 

2.4.1 Panasonic-DAIC system 

We used the following training datasets: 

• Switchboard phase1-3 and cellular1-2. 

• NIST SRE04-10. 

• MIXER6 telephone phonecalls (MX6-tel). 

• NIST SRE18 Dev and Eval. 

• NIST SRE19 Eval. 

• Fisher Spanish. 

• VoxCelebCat 1 + 2: we make VoxCelebCat 1 + 2 by 

concatenating utterances in VoxCeleb 1 + 2 because 

the utterances are very short. 

• LibriSpeech ASR corpus. 

• VCTKcat: we make VCTKcat by concatenating 

utterances in CSTR VCTK Corpus because the 

utterances are very short. 

We made 2 combinations of the above datasets to train 2 

models on SE-ResNeXt50. One combination (named Pana-

C1) is the combination of all of the above datasets, and we 

applied GSM and AMR-NB telephone codecs to 

VoxCelebCat 1 + 2, LibriSpeech, and VCTKcat using SoX. 

The other combination (named Pana-C2) is the combination 

of All datasets except Fisher Spanish, and we applied GSM 

and AMR-NB telephone codecs to VoxCelebCat 1 + 2. All 

the training data are augmented by babble, noise, 

reverberation and music.  

For PLDA back-end training, we used NIST SRE04-19 and 

Fisher Spanish. We did not use any data augmentation. 

 

2.4.2 JHU-CLSP system 

We used the following training datasets: 

• Switchboard phase1-3 and cellular1-2. 

• NIST SRE04-10. 

• NIST SRE12 telephone data (SRE12-tel). 

• MIXER6 telephone phonecalls (MX6-tel). 

• NIST SRE16 Dev: This is the NIST SRE16 

development set. It contains 668 recordings from 10 

Mandarin speakers and 659 recordings from 10 

Cebuano speakers. 

• NIST SRE16 Eval 60%: This set contains 60% of the 

speakers in the NIST SRE16 evaluation set. The rest 

40% was kept for development. This set contains 3299 

recordings from 60 Cantonese speakers and 2904 

recordings from 61 Tagalog speakers. 

• NIST SRE18 Dev: This set contains 1741 recordings 

from 25 Tunisian Arabic speakers. 

• NIST SRE18 Eval: This set contains 13451 recordings 

of 188 Tunisian Arabic speakers. 

• Fisher Spanish: This set contains 1638 recordings from 

136 Spanish speakers. Several Spanish accents are 

included. 

• VoxCeleb 1+2: This dataset contains 7365 speakers 

audiofrom video. The original distribution of 

VoxCeleb splits each video into multiple short excerpts. 

We concatenated all excerpts from the same video into 

one file. This makes the dataset more appropriate for 

PLDA training and also helps to balance the weight of 

each video in the embedding training. After 

concatenation, we obtain 173088 recordings. We 

applied GSM and AMR-NB telephone codecs to this 

data using SoX. 

We trained our x-vectors on the combination of the datasets 

Figure 3: JHU kNN-PLDA-v3 back-end. Enr denotes the enrollment segments, Tst denotes the test segment, and All 

denotes the full training data. 



above with a total of 304k recordings from 13466 speakers. 

For x-vector training, we augmented speech on the fly with 

noise and reverberation. Impulse responses for 

augmentation were obtained from the Aachen impulse 

response database (AIR). The noises were acquired from the 

MUSAN corpus. We used the same SNR levels as in the 

Kaldi recipes. 

For PLDA back-end training, we used NIST SRE04-18 and 

Fisher Spanish. We did not use any data augmentation. 

 

3. FUSION AND CALIBRATION 

Fusion and Calibration was performed using linear logistic 

regression with the original python script. We pre-calibrated 

the scores for each single system separately. After fusing, 

we re-calibrate the fusion score. We used the following 

dataset to train calibration and fusion. 

• NIST SRE16 Eval YUE40%: This set contains 40% of 

the speakers in the NIST SRE16 evaluation set. We 

kept the same trial list as in the original SRE16 but 

keeping only the trials involving those 40 speakers. In 

total, there are 158k YUE trials. 

 

4. PERFORMANCE 

 

The best fusion system of submission for CTS challnge 

consisted of 7 systems in Table .  

 

Table 2: Submission systems 

No. system Training 
Set 

Backend 

1 SE-ResNeXt50 Pana-C2 PLDA 

2 SE-ResNeXt50 Pana-C1 Knn 

3 SE-ResNeXt50 Pana-C2 Knn 

4 ResNet34 JHU Knn 

5 Transformer JHU Knn 

6 EfficientNet JHU Knn 

7 Res2Net50 JHU Knn 

 

5. SUBMISSION SYSTEM 

 

Table  shows our submission system results. Our primary 

system on the SRE20 progress set is: the equal error rate 

(EER) 2.55%, Cmin=0.087 and Cact=0.101. 

Table 3: Our Submission System Results on SRE20 prog. 

 EER minC actC 

fusion 2.55 % 0.087 0.101 

 

6. COMPUTATIONAL RESOURCES 

 

Processing times were measured in Intel(R) Xeon(R) CPU 

E5-2680 v2 @ 2.80GHz. Most of the processing time is 

dedicated to the embedding extraction.  Filter banks, VAD 

and back-end processing time are negligible in comparison. 

Processing time is shown in Table 4. 

 

Table 4: Processing times 

Embedding Real time factor Memory (GB) 

SE-ResNeXt50 0.525289 1.2 

ResNet34 0.0048 1 

Transformer 0.0063 1 

EfficientNet 0.008 2 

Res2Net50 0.0064 1.6 
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