
DAIC-JHU SPEAKER RECOGNITION SYSTEM DESCRIPTION

FOR NIST CTS2020

Kousuke Itakura1, Ryota Hatakenaka1, Shintatou Okada2, Katsunori Daimo1,

Jesús Villalba3,4, Najim Dehak3,4

1 Digital&AI Technology Center, Panasonic Corporation, Japan
2 Connected Solutions Company, Panasonic Corporation, Japan

3 Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA
4 Human Language Technology Center of Excellence, Johns Hopkins University, Baltimore, MD, USA

ABSTRACT

This document describes our system description for the

SRE20 CTS Challenge. We developed several types of

DNN embeddings with PLDA backend. Performance of our

system on in the SRE20 progress set is as follows: the equal

error rate (EER) 2.55%, Cmin=0.087 and Cact=0.101.

1. INTRODUCTION

The DAIC-JHU submission is the joint effort of the teams at

Panasonic (Panasonic-DAIC) and Johns Hopkins

CLSP(JHU-CLSP). Each team explored different x-vector

extractors and PLDA backends with different combination

of training sets.

2. SYSTEM COMPONENT

2.1 Acoustic Features and Voice Activity Detection

The acoustic features were 64 log-Mel filter banks for all

our systems. These features were short-time mean

normalized with a 3 seconds window. Silence frames were

removed using Kaldi energy VAD. The Kaldi energy VAD

makes frame-level decisions, classifying a frame as speech

or non-speech based on the average log-energy in each

window.

2.2 Audio Embeddings

All the x-vector architectures follow the x-vector scheme [1,

2]. In essence, the embedding network consists of an

encoder that extracts frame-level discriminant embeddings,

a pooling mechanism, and a classification head. In our case,

we tried several encoder architectures and used either

statistics pooling (mean+stddev) [1] or channel-wise

attentive statistics pooling [3]. The network is trained to

minimize the categorical cross-entropy loss of the predicted

speaker posteriors. We used additive angular margin

softmax loss [4] in all our networks. We describe the

encoder architectures in the following paragraphs.

2.2.1 Panasonic-DAIC system

• SE-ResNeXt50

SE-ResNeXt50[5] is a squeezing and excitation block

applied to ResNeXt50, and ResNeXt50 is a branching of the

input in each block of ResNet50 into several paths shown in

Figure 1. Table 1 shows SE-ResNeXt50 topology.

Figure 1: basic brock in ResNet50(left) and basic brock in

ResNeXt50(right).

Table 1: the architecture of SE-ResNeXt50

2.2.2 JHU-CLSP system

• ResNet34

This encoder is based on the original ResNet34 architecture

proposed in [6]. ResNet34 has an input stem layer followed

by 16 2D convolutional residual blocks. This architecture

downsamples the feature maps 3 times with a stride of 2 (8×

total downsampling), at the same time as it multiplies the

number of channels in the convolutions.

The output of this network is a four-dimensional tensor

(B, C, F/8, T/8), where B is batch-size, C is number of

channels, F is the number of Mel filters and T is time.

Channel and frequency dimensions are flattened to (B, C ×

F/8, T/8) before passing the features to the pooling layer [7].

• Transformer

We also tried the Transformer Encoder architecture [8] as

Encoder for x-vectors. We used an encoder with 8 self-

attention blocks. The input stem uses a two 2D Conv layers

that downsample time dimension ×4. We also implemented

a local attention procedure that limits the self-attention

receptive field to 6 time steps (25 msecs) in each layer. This

is similar to the Longformer architecture [9].

• EfficientNet-b4

EfficientNet architecture was proposed in [10] for images.

This is a residual network that used 2D separable

convolutions to reduce the number of multiplications of the

network. The work in [10] proposes a base architecture,

denoted as EfficientNetb0. Then larger networks

EfficientNet-bn are obtained by scaling up number of

channels and network depth in such way that EfficientNet-

bn is 2^n times more computationally expensive than b0.

We found that b4 was needed to improve ResNet34. We

also needed to remove the first two feature map

downsamplings from the original EfficientNet architecture.

• Res2Net50

This encoder is based on the original ResNet50 architecture

proposed in [6]. ResNet50 has an input stem layer followed

by 16 Bottleneck residual blocks as the one in Figure 2(left).

These blocks are based on 2D convolutions. This

architecture downsamples the feature maps 3 times with a

stride of 2 (8×total downsampling), at the same time that

multiplies the number of channels in the convolutions.

Res2Net, proposed in [7] replaces the standard bottleneck

blocks by Res2Net blocks in Figure 2(right). Res2Net

divides the channels in the bottleneck layer into several

groups–this is known as the scale parameter. Each group

(except the first one, which is just copied in the output)

passes through a 3×3 convolution and is added to the input

of the convolution of the next group. Hence, each group

observed a different receptive field. In our networks, we set

the scale to 4 or 8; and the number of channels in each

group (width) was set to 26 for the first Res2Net block,

following [7]. Each time the network downsamples the

feature maps, we duplicate the width of the Res2Net groups.

Figure 2: ResNet50 standard bottleneck blocks (left) and

Res2Net50 bottleneck block (right)

2.3 Back-end

• PLDA backend

The pipeline for this back-end included LDA, centering,

whitening, length normalization, and generative Gaussian

SPLDA.

At first, we train LDA and the Whitening step, and then, we

apply length normalization.

PLDA is trained on length normalized embeddings.

• kNN-PLDA

The idea of this back-end consists of training a back-end

model adapted to each trial. The motivation is that we do not

know the number of domains in our eval data and also, we

do not know if all of those domains match any of the

domains in our training and adaptation data. Thus, a PLDA

mixture may not work since the eval data may not match

any of the components of the mixture. We simplify the

problem by assuming that enrollment and test segments

belong to the same domain, as indicated in the eval plan.

The method consists of training a back-end (including

PCA/LDA/centering/whitening/PLDA) model using the k

Nearest training speakers to the enrollment segments (1 or

3) of the trial. The enrollment segments are also included in

the back-end training. In this manner, even if the trial’s

domain is not included in the training, the corresponding

back-end can be trained using the closest speakers from

multiple domains. We also think that this method can

benefit from domain adaptation. The number of in-domain

neighbors may be too small to train PLDA. Instead, we can

train the back-end on a larger number of speaker neighbors

k1 and adapt to a smallest (closest) number of speakers

neighbors k2.

The procedure is depicted in Figure 3. For each enrollment

side, we use cosine scoring to find the k1 closest training

speakers. Then, we pool the enrollment segments and all the

recordings from those k1 speakers and we train a Basic

backend (PCA/LDA/centering/whitening/LNorm), denoted

as BE1. Then, we score again the enrollment model versus

the training speakers, but this time using BE1 back-end, to

find a refined set of in-domain speakers k2 < k1. Then, we

use those speakers to adapt BE1’s centering and PLDA and

produce BE2. In this manner, we train a back-end for each

enrollment model, and use that back-end for all the trials

that involve that model.

This back-end does not require S-Norm.

2.4 Training datasets

2.4.1 Panasonic-DAIC system

We used the following training datasets:

• Switchboard phase1-3 and cellular1-2.

• NIST SRE04-10.

• MIXER6 telephone phonecalls (MX6-tel).

• NIST SRE18 Dev and Eval.

• NIST SRE19 Eval.

• Fisher Spanish.

• VoxCelebCat 1 + 2: we make VoxCelebCat 1 + 2 by

concatenating utterances in VoxCeleb 1 + 2 because

the utterances are very short.

• LibriSpeech ASR corpus.

• VCTKcat: we make VCTKcat by concatenating

utterances in CSTR VCTK Corpus because the

utterances are very short.

We made 2 combinations of the above datasets to train 2

models on SE-ResNeXt50. One combination (named Pana-

C1) is the combination of all of the above datasets, and we

applied GSM and AMR-NB telephone codecs to

VoxCelebCat 1 + 2, LibriSpeech, and VCTKcat using SoX.

The other combination (named Pana-C2) is the combination

of All datasets except Fisher Spanish, and we applied GSM

and AMR-NB telephone codecs to VoxCelebCat 1 + 2. All

the training data are augmented by babble, noise,

reverberation and music.

For PLDA back-end training, we used NIST SRE04-19 and

Fisher Spanish. We did not use any data augmentation.

2.4.2 JHU-CLSP system

We used the following training datasets:

• Switchboard phase1-3 and cellular1-2.

• NIST SRE04-10.

• NIST SRE12 telephone data (SRE12-tel).

• MIXER6 telephone phonecalls (MX6-tel).

• NIST SRE16 Dev: This is the NIST SRE16

development set. It contains 668 recordings from 10

Mandarin speakers and 659 recordings from 10

Cebuano speakers.

• NIST SRE16 Eval 60%: This set contains 60% of the

speakers in the NIST SRE16 evaluation set. The rest

40% was kept for development. This set contains 3299

recordings from 60 Cantonese speakers and 2904

recordings from 61 Tagalog speakers.

• NIST SRE18 Dev: This set contains 1741 recordings

from 25 Tunisian Arabic speakers.

• NIST SRE18 Eval: This set contains 13451 recordings

of 188 Tunisian Arabic speakers.

• Fisher Spanish: This set contains 1638 recordings from

136 Spanish speakers. Several Spanish accents are

included.

• VoxCeleb 1+2: This dataset contains 7365 speakers

audiofrom video. The original distribution of

VoxCeleb splits each video into multiple short excerpts.

We concatenated all excerpts from the same video into

one file. This makes the dataset more appropriate for

PLDA training and also helps to balance the weight of

each video in the embedding training. After

concatenation, we obtain 173088 recordings. We

applied GSM and AMR-NB telephone codecs to this

data using SoX.

We trained our x-vectors on the combination of the datasets

Figure 3: JHU kNN-PLDA-v3 back-end. Enr denotes the enrollment segments, Tst denotes the test segment, and All

denotes the full training data.

above with a total of 304k recordings from 13466 speakers.

For x-vector training, we augmented speech on the fly with

noise and reverberation. Impulse responses for

augmentation were obtained from the Aachen impulse

response database (AIR). The noises were acquired from the

MUSAN corpus. We used the same SNR levels as in the

Kaldi recipes.

For PLDA back-end training, we used NIST SRE04-18 and

Fisher Spanish. We did not use any data augmentation.

3. FUSION AND CALIBRATION

Fusion and Calibration was performed using linear logistic

regression with the original python script. We pre-calibrated

the scores for each single system separately. After fusing,

we re-calibrate the fusion score. We used the following

dataset to train calibration and fusion.

• NIST SRE16 Eval YUE40%: This set contains 40% of

the speakers in the NIST SRE16 evaluation set. We

kept the same trial list as in the original SRE16 but

keeping only the trials involving those 40 speakers. In

total, there are 158k YUE trials.

4. PERFORMANCE

The best fusion system of submission for CTS challnge

consisted of 7 systems in Table .

Table 2: Submission systems

No. system Training
Set

Backend

1 SE-ResNeXt50 Pana-C2 PLDA

2 SE-ResNeXt50 Pana-C1 Knn

3 SE-ResNeXt50 Pana-C2 Knn

4 ResNet34 JHU Knn

5 Transformer JHU Knn

6 EfficientNet JHU Knn

7 Res2Net50 JHU Knn

5. SUBMISSION SYSTEM

Table shows our submission system results. Our primary

system on the SRE20 progress set is: the equal error rate

(EER) 2.55%, Cmin=0.087 and Cact=0.101.

Table 3: Our Submission System Results on SRE20 prog.

 EER minC actC

fusion 2.55 % 0.087 0.101

6. COMPUTATIONAL RESOURCES

Processing times were measured in Intel(R) Xeon(R) CPU

E5-2680 v2 @ 2.80GHz. Most of the processing time is

dedicated to the embedding extraction. Filter banks, VAD

and back-end processing time are negligible in comparison.

Processing time is shown in Table 4.

Table 4: Processing times

Embedding Real time factor Memory (GB)

SE-ResNeXt50 0.525289 1.2

ResNet34 0.0048 1

Transformer 0.0063 1

EfficientNet 0.008 2

Res2Net50 0.0064 1.6

7. REFERENCES

[1] D. Snyder, D. Garcia-Romero, D. Povey, and S.

Khudanpur, “Deep Neural Network Embeddings for

Text-Independent Speaker Verification,” in Proc.

INTERSPEECH 2017.

[2] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D.

Povey, and S. Khudanpur, “X-Vectors: Robust DNN

Embeddings for Speaker Recognition,” in Proc. IEEE

ICASSP, 2018.

[3] B. Desplanques, J. Thienpondt, and K. Demuynck,

“Ecapa-tdnn: Emphasized channel attention,

propagation and aggregation in tdnn based speaker

verification,” in Proc. INTERSPEECH, 2020.

[4] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface:

Additive angular margin loss for deep face

recognition,” in Proc. CVPR, 2019.

[5] J. Hu, L. Shen, G. Sun, “Squeeze-and-Excitation

Networks” in Proc. CVPR, 2018.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” dec 2015.

[7] H. Zeinali, S. Wang, A. Silnova, P. Matejka, and O.

Plchot, “But system description to voxceleb speaker

recognition challenge 2019,” in VoxSRC Challenge

workshop, 2019.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.

Jones, A. N Gomez, Ł. Kaiser, and I. Polosukhin,

“Attention is all you need,” in Advances in neural

information processing systems, 2017

[9] I. Beltagy, M. E Peters, and A. Cohan, “Longformer:

The long-document transformer,” arXiv preprint

arXiv:2004.05150, 2020.

[10] M. Tan and Q. Le, “EfficientNet: Rethinking model

scaling for convolutional neural networks,” in

Proceedings of the 36th International Conference on

Machine Learning, Kamalika Chaudhuri and Ruslan

Salakhutdinov, Eds. 09–15 Jun 2019, vol. 97 of

Proceedings of Machine Learning Research, pp. 6105–

6114, PMLR.

