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Abstract
This document presents the SRE20 CTS Challenge sys-
tem description for the joint effort of the teams at JHU-
CLSP/HLTCOE, and MIT Lincoln Laboratory. All the devel-
oped systems consisted of neural network embeddings with
some flavor of PLDA back-end. We evaluated multiple x-
vector architectures based on ResNets, Transformer and Effi-
cientNet. We also propose novel PLDA mixture back-end and
kNN PLDA back-end that provided improvements with respect
to the basic PLDA back-end. Our best fusion achieved Act
Cp=0.101 in the SRE20 progress and Act Cp=0.087 in SRE20
Eval set. Our best single system achieved Act Cp=0.110 in the
SRE20 progress set.

1. Introduction
This document presents the SRE20 CTS Challenge sys-
tem description for the joint effort of the teams at JHU-
CLSP/HLTCOE, and MIT Lincoln Laboratory.

All the systems developed for this evaluation consisted of
a neural network embedding based on ResNet, Transformer or
EfficientNet followed by some form of PLDA back-end. We
tried PLDA adapted from English to non-English data; a mix-
ture of PLDAs; and training a PLDA adapted to each enrollment
side, which is trained on the closest speaker to the enrollment
speakers. More in detail, all systems followed these steps:

1. Acoustic feature extraction (MFCC).

2. Voice activity detection.

3. Embedding extraction.

4. Embedding post-processing.

5. PLDA log-likelihood ratio evaluation.

6. Adaptive score-normalization (optional).

7. Fusion/calibration.

2. Training datasets
We used the following training datasets:

• Switchboard phase1-3 and cellular1-2.

• NIST SRE04-10.

• NIST SRE12 telephone data (SRE12-tel).

• MIXER6 telephone phonecalls (MX6-tel).

• NIST SRE16 Dev: This is the NIST SRE16 develop-
ment set. It contains 668 recordings from 10 Mandarin
speakers and 659 recordings from 10 Cebuano speakers.

• NIST SRE16 Eval 60%: This set contains 60% of the
speakers in the NIST SRE16 evaluation set. The remain-
ing 40% was kept for development. This set contains
3299 recordings from 60 Cantonese speakers and 2904
recordings from 61 Tagalog speakers.

• NIST SRE18 Dev: This set contains 1741 recordings
from 25 Tunisian Arabic speakers.

• NIST SRE18 Eval: This set contains 13451 recordings
of 188 Tunisian Arabic speakers.

• Fisher Spanish: This set contains 1638 recordings from
136 Spanish speakers. Several Spanish accents are in-
cluded.

• VoxCeleb 1+2: This dataset contains 7365 speakers au-
dio from video. The original distribution of VoxCeleb
splits each video into multiple short excerpts. We con-
catenated all excerpts from the same video into one file.
This makes the dataset more appropriate for PLDA train-
ing and also helps to balance the weight of each video
in the embedding training. After concatenation, we ob-
tain 173088 recordings. We applied GSM and AMR-NB
telephone codecs to this data using SoX.

• NIST LRE: This set includes telephony samples from
NIST LRE11-19 which contain more than 5 seconds of
active speech. The set was randomly downsampled to a
size of 20k.

We trained our x-vectors on the combination of the datasets
above (except LRE) with a total of 304k recordings from 13466
speakers. For x-vector training, we augmented speech on the fly
with noise and reverberation. Impulse responses for augmenta-
tion were obtained from the Aachen impulse response database
(AIR)1. The noises were acquired from the MUSAN corpus2.
We used the same SNR levels as in the Kaldi recipes.

For PLDA back-end training, we used NIST SRE04-18 and
Fisher Spanish. We did not use any data augmentation.

We also tried to add other datasets to x-vector and PLDA
training, but they did not improve the results on the SRE20
progress set:

• IARPA Babel: We added all available languages and ob-
tained pseudo-speaker labels by clustering.

• NIST LRE17: We added all available languages and ob-
tained pseudo-speaker labels by clustering.

1http://www.openslr.org/resources/28
2http://www.openslr.org/resources/17



• Mozilla Common-Voice: We added all available lan-
guages except English, using the provided speaker la-
bels. We only used speakers with more than 30 utter-
ances. Telephone codecs were applied with SoX.

• CN-Celeb: This set includes audio from Video from Chi-
nese Celebrities. Telephone codecs were applied with
SoX.

• Multilingual LibriSpeech (MLS). Telephone codecs
were applied with SoX.

3. Development datasets
We prepared three datasets for development:

• NIST SRE16 Eval YUE/TGL40%: This set contains
40% of the speakers (40 YUE and 40 TGL speakers) in
the NIST SRE16 evaluation set. We kept the same trial
list as in the original SRE16 but keeping only the tri-
als involving those 80 speakers. In total, there are 158k
YUE and 174k TGL trials.

• NIST SRE19 Eval: This set contains 2.6M trials from
Tunisian Arabic speakers.

These three sets were used for fusion. NIST SRE16 YUE40%
was used for individual system calibration and final calibration
of fusions. We observed that NIST SRE16 YUE produced the
best calibration on the SRE20 progress set.

4. Acoustic features and VAD
The acoustic features were 64 log-Mel-filter banks for all our
systems. These features were short-time mean normalized with
a 3 seconds window. Silence frames were removed using Kaldi
energy VAD. The Kaldi energy VAD makes frame-level deci-
sions, classifying a frame as speech or non-speech based on the
average log-energy in a given window.

5. Audio embeddings
5.1. Architectures

All the x-vector architectures follow the x-vector scheme [1, 2].
In essence, the embedding network consists of an encoder
that extracts frame-level discriminant embeddings, a pooling
mechanism and a classification head. In our case, we tried
several encoder architectures and used either statistics pool-
ing (mean+stddev) [1] or channel-wise attentive statistics pool-
ing [3]. The network is trained to minimize the categorical
cross-entropy loss of the predicted speaker posteriors. We used
additive angular margin softmax loss [4] in all our networks. We
describe the encoder architectures in the following paragraphs.

5.1.1. ResNet34

This encoder is based on the original ResNet34 architecture pro-
posed in [5]. ResNet34 has an input stem layer followed by
16 2D convolutional residual blocks. This architecture down-
samples the feature maps 3 times with a stride of 2 (8× total
downsampling), at the same time as it multiplies the number of
channels in the convolutions.

The output of this network is a four dimensional tensor
(B,C, F/8, T/8), where B is batch-size, C is number of chan-
nels, F is the number of Mel filters and T is time. Channel and
frequency dimensions are flattened to (B,C × F/8, T/8) be-
fore passing the features to the pooling layer [6].

Figure 1: Standard squeeze-excitation (SE) (left) and temporal
squeeze-excitation (TSE) (right)

5.1.2. ResNet34-IN

We replaced the ResNet34 Batch-Normalization by Instance
Normalization. We also replace the classification head Batch-
Normalization by Layer Normalization. Hence, the normaliza-
tion parameters do not depend on the training batch-size. This
enables us to train with smaller batches and longer chunks.

5.1.3. TSE-ResNet34

This encoder adds squeeze-excitation (SE) [7] blocks to
ResNet34. The original SE, in Figure 1 (left), in 2D convolu-
tions performs a pooling operation in both time and frequency
dimensions (spatial dimensions in image). Then it applies a
scaling to the feature maps which is channel dependent but it
is the same for all the frequency dimensions. We observed
that standard SE does not provide significant gains for speaker
recognition. In [8, 9], we proposed temporal squeeze-excitation
(TSE), depicted in Figure 1 (right). TSE applies pooling only
in the temporal axis and applies a scaling which is different for
each channel and frequency dimension.

5.1.4. Transformer

We also tried the Transformer Encoder architecture [10] as an
encoder for x-vectors. We used an encoder with 8 self atten-
tion blocks. The input stem uses a two 2D Conv layers that
downsample time dimension ×4. We also implemented a local
attention procedure that limits the self-attention receptive field
to 6 time steps (25 msecs) in each layer. This is similar to the
Longformer architecture [11].

5.1.5. EfficientNet-b4

EfficientNet architecture was proposed in [12] for images. This
is a residual network that used 2D separable convolutions to re-
duce the number of multiplications of the network. The work
in [12] proposes a base architecture, denoted as EfficientNet-b0.
Then larger networks EfficientNet-bn are obtained by scaling
up the number of channels and network depth in such way that
EfficientNet-bn is 2n times more computationally expensive
than b0. We found that b4 was needed to improve ResNet34.
We also needed to remove the first two feature map downsam-
plings from the original EfficientNet architecture.



Figure 2: CORAL+LDA+LN+PLDA+S-Norm Back-end. This scheme is used in JHU-PLDA-v4 and MITLL-mix1 back-ends. In
denotes in-domain data, Out denotes out-of-domain data, and All denotes pooling both.

Figure 3: JHU kNN-PLDA-v3 back-end. Enr denotes the enrollment segments, Tst denotes the test segment, and All denotes the full
training data.

5.2. Training procedure

All networks were first trained on 4 second chunks using an ef-
fective batch-size of 512. The real batch size depended on the
GPU memory and network size. Gradient accumulation was
used to achieve the desired effective batch size. The learning
rate was set to 0.01 and kept constant for 40k model updates.
Afterwards, it was divided by two every 10k steps until con-
vergence. Later, the networks were fine-tuned using cyclic co-
sine learning rate scheduling on longer utterances (10-60 sec-
ond chunks).

5.3. JHU Embeddings

Here, we summarize the networks included in our fusions. Un-
less indicated otherwise, all these networks were trained on
MIXER-6, SRE04-18, SwitchBoard and VoxCeleb. Unless in-
dicated otherwise, we used statistics pooling.

• ResNet34

• TSE-ResNet34: ResNet34 with temporal squeeze-
excitation.

• ResNet34-IN: ResNet34 with instance normalization.

• ResNet34-IN-chwise-att: ResNet34 with instance nor-
malization and channel-wise attentive statistics pooling.

• Transformer

• EfficientNet-b4

5.4. MITLL Embeddings

The MITLL system used speaker embeddings from a ResNet34
network, which included mean and standard deviation pooling
layers to form the extracted embedding.

6. Audio Back-ends
6.1. JHU PLDA-v4

The pipeline for this back-end included CORAL, LDA, cen-
tering, whitening, length normalization, generative Gaussian
SPLDA and adaptive S-Norm score normalization, as shown in
Figure 2. For this back-end, we considered NIST SRE04-12 as
out-of-domain (OUT) data (mostly in English); and SRE16-18
and Fisher Spanish as in-domain (IN) data.

The CORAL step computes a rotation that adapts the OUT
data to the target domain. Thus, we apply that rotation to the
OUT data, while we left the IN data untouched. Next, we pool
IN and adapted OUT data to train LDA and the Whitening step.
Meanwhile, we compute different centering for OUT and IN
data. The latter is the one used on the test data. Next, we apply
length normalization.

PLDA is trained on IN+OUT length normalized embed-
dings. Following, PLDA is adapted to the IN domain data. For
PLDA adaptation, the within-class and across-class covariances
of the adapted model were a weighted sum of the out-of-domain
Sout and in-domain Sin covariances,

Sadapt = αSin + (1− α)Sout . (1)

where we set α = 0.75
After PLDA scoring, we applied Adaptive S-Norm using all

IN+OUT data as cohort. We used the top 500 cohort segments
to compute the normalization parameters for each trial.

6.2. JHU kNN-PLDA-v3

The idea of this back-end consists of training a back-end model
adapted to each trial. The motivation is that we do not know
the number of domains in our eval data and, also, we do not
know if all of those domains match any of the domains in our
training and adaptation data. Thus, a PLDA mixture may not



Table 1: Data Used in the MITLL Back-end

Data Set CORAL LDA Center/ PLDA PLDA S-NormWhiten Adapt.
SRE04-10 ✓
SRE16 Eval ✓ ✓ ✓ ✓ ✓
SRE18 Eval ✓ ✓ ✓ ✓ ✓
LRE ✓ ✓ ✓ ✓

Table 2: Results of Individual systems on SRE16-19 dev sets and SRE20 progress set
System SRE19 Eval SRE16 YUE40% SRE16 TGL40% SRE16-9 AVG SRE20 Prog.

Embed. BE EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp

ResNet34-MITLL MITLL-1mix 3.22 0.179 0.198 2.09 0.133 0.137 5.99 0.372 0.379 3.76 0.228 0.238 2.84 0.120 0.153
ResNet34-MITLL MITLL-8mix 3.19 0.164 0.206 1.85 0.114 0.115 5.39 0.320 0.363 3.47 0.199 0.228 2.64 0.108 0.145

ResNet34 JHU-v4-SNorm 3.38 0.179 0.22 2.15 0.131 0.134 5.71 0.335 0.361 3.747 0.215 0.238 3.65 0.137 0.161
JHU-kNN-v3 2.92 0.145 0.153 1.73 0.108 0.11 5.92 0.308 0.36 3.523 0.187 0.208

ResNet34-IN JHU-v4-SNorm 3.9 0.194 0.267 1.92 0.126 0.129 5.38 0.338 0.394 3.733 0.219 0.263 3.2 0.144 0.174
JHU-kNN-v3 2.78 0.14 0.148 1.54 0.093 0.096 5.21 0.277 0.289 3.177 0.170 0.178 2.52 0.109 0.113

Transformer JHU-v4-SNorm 3.55 0.194 0.243 2.41 0.162 0.166 6.55 0.377 0.392 4.170 0.244 0.267 3.25 0.134 0.168
JHU-kNN-v3 3.08 0.163 0.179 1.96 0.128 0.129 7.51 0.373 0.423 4.183 0.221 0.244

TSE-ResNet34 JHU-kNN-v3 3.82 0.176 0.184 2.27 0.156 0.156 7.02 0.388 0.408 4.370 0.240 0.249
EfficientNet-b4 JHU-kNN-v3 2.72 0.136 0.156 1.76 0.1 0.101 5.05 0.279 0.287 3.177 0.172 0.181 2.81 0.12 0.129
ResNet34-IN-chwise-att JHU-kNN-v3 2.69 0.134 0.142 1.5 0.089 0.09 4.37 0.246 0.278 2.853 0.156 0.170 2.71 0.108 0.11

work since the eval data may not match any of the components
of the mixture.

We simplify the problem by assuming that enrollment and
test segments belong to the same domain, as indicated in the
eval plan. The method consists of training a back-end (includ-
ing PCA/LDA/centering/whitening/PLDA) model using the k
Nearest training speakers to the enrollment segments (1 or 3) of
the trial. The enrollment segments are also included in the back-
end training. Hence, even if the trial’s domain is not included
in the training, the corresponding back-end can be trained using
the closest speakers from multiple domains.

We also think that this method can benefit from domain
adaptation. The number of in-domain neighbors may be too
small to train PLDA. Instead, we can train the back-end on a
larger number of speaker neighbors k1 and adapt to a smallest
(closest) number of speakers neighbors k2.

The procedure is depicted in Figure 3. For each enroll-
ment side, we use cosine scoring to find the k1 closest training
speakers. Then, we pool the enrollment segments and all the
recordings from those k1 speakers and we train a Basic back-
end (PCA/LDA/centering/whitening/LNorm), denoted as BE1.
Then, we score again the enrollment model versus the training
speakers, but this time using BE1 back-end, to find a refined set
of in-domain speakers k2 < k1. Then, we use those speakers
to adapt BE1’s centering and PLDA and produce BE2. In this
manner, we train a back-end for each enrollment model, and use
that back-end for all the trials that involve that model.

This back-end does not require S-Norm.

6.3. MITLL-1mix

The MITLL-1mix system used a variety of data sets in the back-
end. The scoring pipeline was comprised of CORAL feature
mapping of the out-of-domain set. LDA dimension reduction to
200 was then applied, followed by global centering and whiten-
ing. An out-domain PLDA model was then trained, which was
adapted to a partially unlabelled in-domain set. Finally, adap-
tive S-Norm was applied with a cohort size of 1000. Table 1 out-
lines the data sets utilized for each component of the back-end
scoring system. In order to leverage the large unlabelled LRE
set during PLDA scoring, semi-supervised adaptation [13] was

used to adapt the out-of-domain model to this set, along with
the labelled SRE16 Eval and SRE18 Eval sets.

6.4. MITLL-8mix

The MITLL-8mix system extended the back-end scoring sys-
tem from Sec. 6.3 to include mixture modelling in the adapted
PLDA model. The technique proposed in [13] was generalized
to allow for a mixture of PLDA models to be trained with a
partially unalabelled data set. In all other respects, the MITLL-
8mix was identical to the MITLL-1mix system.

7. Audio Calibration and Fusion
7.1. JHU single system calibration

The JHU systems conditioned score calibration on the number
of enrollment cuts (i.e. 1c vs. 3c). A separate logistic regres-
sion mapping was trained for each these two conditions on the
NIST SRE16 YUE40%, development set. We used a target prior
PT = 0.05.

7.2. MIT single system calibration

The MITLL systems conditioned score calibration on gender
and the number of enrollment cuts (i.e. 1c vs. 3c). A separate
logistic regression mapping was trained for each of the 4 com-
binations of these attributes, using the NIST SRE16 YUE40%
data set. The target prior PT = 0.05 was used for each. To ob-
tain gender labels, a gender classifier based on linear discrimi-
nant analysis was trained on the SRE04-10 set.

7.3. Fusion

To select the best fusion combination, we used a greedy fusion
scheme as last year [14]. First, we calibrate all the systems and
select the best one given the lowest actual cost. We fix that best
system and evaluate all the two system fusions that include the
best system. Thus, we select the best fusion of two systems.
We fix those two system and then add a third system, and so on.
The fusion was trained on SRE16+18 dev sets. Following, we
recalibrated the fused scores on NIST SRE16 YUE.



Table 3: Fusion summary.
Submission Date Num. Sys. Systems

v1.4-4 2020/10/29 4 ResNet34×MITLL-1mix + (ResNet34-IN + ResNet34+Transformer)×JHU-v4-SNorm
v1.8.1-4 2020/11/16 4 ResNet34×MITLL-1mix + (ResNet34-IN + ResNet34+TSE-ResNet34)×JHU-kNN-v3
v1.17-4 2020/12/18 4 ResNet34×MITLL-8mix + (ResNet34-IN + Transformer + EfficientNet-b4)×JHU-kNN-v3
v1.25-5 2021/04/13 5 ResNet34×MITLL-8mix + (ResNet34-IN + Transformer + EfficientNet-b4 + ResNet34-IN-chwise-att)×JHU-kNN-v3

Table 4: Results of Submitted fusions on SRE16-19 dev sets and SRE20 progress/eval set
System SRE19 Eval SRE16 YUE40% SRE16 TGL40% SRE16-9 AVG SRE20 Prog. SRE20 Eval.

EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp

v1.4-4 2.64 0.146 0.188 1.62 0.112 0.113 4.4 0.291 0.32 2.887 0.183 0.207 2.63 0.107 0.127 3.16 0.088 0.097
v1.8.1-4 2.39 0.125 0.137 1.33 0.084 0.084 4.55 0.258 0.26 2.757 0.156 0.160 2.4 0.1 0.108 3.2 0.087 0.09
v1.17-4 2.33 0.121 0.146 1.27 0.077 0.078 4.63 0.258 0.259 2.743 0.152 0.161 2.28 0.089 0.105 3.2 0.086 0.093
v1.25-5 2.3 0.118 0.139 1.23 0.075 0.075 4.31 0.242 0.243 2.613 0.145 0.152 2.33 0.092 0.101 3.19 0.083 0.087

Table 5: Computational resources x-vectors. Real-time factor
is measured as processing time divided between utterance du-
ration (lower is better). Memory is computed to process 10 sec-
onds of speech.
System Real time factor (Tproc/Tdur) Memory (10secs) (GB)

ResNet34 0.0048 1
ResNet34-IN 0.0048 1
TSE-ResNet34 0.0050 1
Transformer 0.0063 1
EfficientNet-b4 0.008 2

8. Single Systems

Table 2 summarizes the results for the single systems that were
part of our fusions. We can see that ResNet34-IN is highly com-
petitive performing better than larget architectures like TSE-
ResNet34 or EfficientNet. Adding channel wise attention pool-
ing slightly improves the results. Regarding back-end, we ob-
serve that MITLL-mix8 outperforms MITLL-mix1 back-end.
Also, the kNN PLDA back-end greatly improves over the single
PLDA adapted to non-English data.

9. Submissions

Table 3 summarizes the fusions that appear on the SRE20 Eval
leader-board. Table 4 shows the results on the dev, progress and
eval set. We observe a significant improvement from our first to
our last submission on our dev and SRE20 progress sets. How-
ever, the improvement on the SRE20 Eval was less significant.

10. Computation resources

Processing times for x-vectors were measured in a GPU
GeForce RTX 2080 Ti. Most of the processing time is dedi-
cated to the embedding extraction. MFCC, VAD and back-end
processing time are negligible by comparison. For Audio Em-
beddings the GPU memory used depends on how many frames
(chunk-size) are processed in parallel to compute the hidden
features before the x-vector pooling layer. We tune the chunk-
size for full memory utilization in a 11 GB GPU. The table
shows the memory required to process 10 secs of speech in par-
allel.
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